NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Xue Zhang; Chun Wang – Grantee Submission, 2021
Among current state-of-art estimation methods for multilevel IRT models, the two-stage divide-and-conquer strategy has practical advantages, such as clearer definition of factors, convenience for secondary data analysis, convenience for model calibration and fit evaluation, and avoidance of improper solutions. However, various studies have shown…
Descriptors: Error of Measurement, Error Correction, Item Response Theory, Comparative Analysis
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang, Ji Seung; Cai, Li – Grantee Submission, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). Results indicate that the MH-RM algorithm can…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Cho, Sun-Joo; Bottge, Brian A. – Grantee Submission, 2015
In a pretest-posttest cluster-randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre-test scores and other related covariates while estimating an intervention effect at post-test. In many applications in education, the total post-test and pre-test scores that ignores measurement error in the…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Pretests Posttests, Scores
Cho, Sun-Joo; Preacher, Kristopher J.; Bottge, Brian A. – Grantee Submission, 2015
Multilevel modeling (MLM) is frequently used to detect group differences, such as an intervention effect in a pre-test--post-test cluster-randomized design. Group differences on the post-test scores are detected by controlling for pre-test scores as a proxy variable for unobserved factors that predict future attributes. The pre-test and post-test…
Descriptors: Structural Equation Models, Hierarchical Linear Modeling, Intervention, Program Effectiveness