NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
McNeish, Daniel; Bauer, Daniel J. – Grantee Submission, 2020
Deciding which random effects to retain is a central decision in mixed effect models. Recent recommendations advise a maximal structure whereby all theoretically relevant random effects are retained. Nonetheless, including many random effects often leads to nonpositive definiteness. A typical remedy is to simplify the random effect structure by…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Factor Analysis, Matrices
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)
Daniel McNeish; Laura M. Stapleton; Rebecca D. Silverman – Grantee Submission, 2017
In psychology and the behavioral sciences generally, the use of the hierarchical linear model (HLM) and its extensions for discrete outcomes are popular methods for modeling clustered data. HLM and its discrete outcome extensions, however, are certainly not the only methods available to model clustered data. Although other methods exist and are…
Descriptors: Hierarchical Linear Modeling, Social Science Research, Multivariate Analysis, Error Patterns
Hedges, Larry V.; Hedberg, Eric C. – Grantee Submission, 2013
Background: Cluster randomized experiments that assign intact groups such as schools or school districts to treatment conditions are increasingly common in educational research. Such experiments are inherently multilevel designs whose sensitivity (statistical power and precision of estimates) depends on the variance decomposition across levels.…
Descriptors: Correlation, Multivariate Analysis, Educational Experiments, Academic Achievement