NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Linh Huynh; Danielle S. McNamara – Grantee Submission, 2025
We conducted two experiments to assess the alignment between Generative AI (GenAI) text personalization and hypothetical readers' profiles. In Experiment 1, four LLMs (i.e., Claude 3.5 Sonnet; Llama; Gemini Pro 1.5; ChatGPT 4) were prompted to tailor 10 science texts (i.e., biology, chemistry, physics) to accommodate four different profiles…
Descriptors: Natural Language Processing, Profiles, Individual Differences, Semantics
Allen, Laura K.; Creer, Sarah D.; Poulos, Mary Cati – Grantee Submission, 2021
Research in discourse processing has provided us with a strong foundation for understanding the characteristics of text and discourse, as well as their influence on our processing and representation of texts. However, recent advances in computational techniques have allowed researchers to examine discourse processes in new ways. The purpose of the…
Descriptors: Natural Language Processing, Computation, Discourse Analysis, Computer Science
Öncel, Püren; Flynn, Lauren E.; Sonia, Allison N.; Barker, Kennis E.; Lindsay, Grace C.; McClure, Caleb M.; McNamara, Danielle S.; Allen, Laura K. – Grantee Submission, 2021
Automated Writing Evaluation systems have been developed to help students improve their writing skills through the automated delivery of both summative and formative feedback. These systems have demonstrated strong potential in a variety of educational contexts; however, they remain limited in their personalization and scope. The purpose of the…
Descriptors: Computer Assisted Instruction, Writing Evaluation, Formative Evaluation, Summative Evaluation
Allen, Laura K.; Mills, Caitlin; Jacovina, Matthew E.; Crossley, Scott; D'Mello, Sidney; McNamara, Danielle S. – Grantee Submission, 2016
Writing training systems have been developed to provide students with instruction and deliberate practice on their writing. Although generally successful in providing accurate scores, a common criticism of these systems is their lack of personalization and adaptive instruction. In particular, these systems tend to place the strongest emphasis on…
Descriptors: Learner Engagement, Psychological Patterns, Writing Instruction, Essays
Allen, Laura K.; Snow, Erica L.; McNamara, Danielle S. – Grantee Submission, 2016
A commonly held belief among educators, researchers, and students is that high-quality texts are easier to read than low-quality texts, as they contain more engaging narrative and story-like elements. Interestingly, these assumptions have typically failed to be supported by the literature on writing. Previous research suggests that higher quality…
Descriptors: Role, Writing (Composition), Natural Language Processing, Hypothesis Testing
Snow, Erica L.; Allen, Laura K.; Jacovina, Matthew E.; Crossley, Scott A.; Perret, Cecile A.; McNamara, Danielle S. – Grantee Submission, 2015
Writing researchers have suggested that students who are perceived as strong writers (i.e., those who generate texts rated as high quality) demonstrate flexibility in their writing style. While anecdotally this has been a commonly held belief among researchers and educators, there is little empirical research to support this claim. This study…
Descriptors: Writing (Composition), Writing Strategies, Hypothesis Testing, Essays