NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Grantee Submission28
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations1
Showing 1 to 15 of 28 results Save | Export
Sy Han Chiou; Gongjun Xu; Jun Yan; Chiung-Yu Huang – Grantee Submission, 2023
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events,…
Descriptors: Data Analysis, Computer Software, Regression (Statistics), Models
Peer reviewed Peer reviewed
Direct linkDirect link
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Rashelle J. Musci; Joseph Kush; Elise T. Pas; Catherine P. Bradshaw – Grantee Submission, 2024
Given the increased focus of educational research on what works for whom and under what circumstances over the last decade, educational researchers are increasingly turning toward mixture models to identify heterogeneous subgroups among students. Such data are inherently nested, as students are nested within classrooms and schools. Yet there has…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Nonparametric Statistics, Educational Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Magooda, Ahmed; Litman, Diane – Grantee Submission, 2021
This paper explores three simple data manipulation techniques (synthesis, augmentation, curriculum) for improving abstractive summarization models without the need for any additional data. We introduce a method of data synthesis with paraphrasing, a data augmentation technique with sample mixing, and curriculum learning with two new difficulty…
Descriptors: Data Analysis, Synthesis, Documentation, Models
Philip I. Pavlik; Luke G. Eglington – Grantee Submission, 2023
This paper presents a tool for creating student models in logistic regression. Creating student models has typically been done by expert selection of the appropriate terms, beginning with models as simple as IRT or AFM but more recently with highly complex models like BestLR. While alternative methods exist to select the appropriate predictors for…
Descriptors: Students, Models, Regression (Statistics), Alternative Assessment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Magooda, Ahmed; Elaraby, Mohamed; Litman, Diane – Grantee Submission, 2021
This paper explores the effect of using multitask learning for abstractive summarization in the context of small training corpora. In particular, we incorporate four different tasks (extractive summarization, language modeling, concept detection, and paraphrase detection) both individually and in combination, with the goal of enhancing the target…
Descriptors: Data Analysis, Synthesis, Documentation, Training
Kaplan, David; Chen, Jianschen; Yavuz, Sinan; Lyu, Weicong – Grantee Submission, 2022
The purpose of this paper is to demonstrate and evaluate the use of "Bayesian dynamic borrowing"(Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian hierarchical models is a special case…
Descriptors: Bayesian Statistics, Models, Prediction, Accuracy
Egamaria Alacam; Craig K. Enders; Han Du; Brian T. Keller – Grantee Submission, 2023
Composite scores are an exceptionally important psychometric tool for behavioral science research applications. A prototypical example occurs with self-report data, where researchers routinely use questionnaires with multiple items that tap into different features of a target construct. Item-level missing data are endemic to composite score…
Descriptors: Regression (Statistics), Scores, Psychometrics, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Grantee Submission, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Cai, Zhiqiang; Siebert-Evenstone, Amanda; Eagan, Brendan; Shaffer, David Williamson – Grantee Submission, 2021
When text datasets are very large, manually coding line by line becomes impractical. As a result, researchers sometimes try to use machine learning algorithms to automatically code text data. One of the most popular algorithms is topic modeling. For a given text dataset, a topic model provides probability distributions of words for a set of…
Descriptors: Coding, Artificial Intelligence, Models, Probability
von Eye, Alexander; Wiedermann, Wolfgang; Herman, Keith C.; Reinke, Wendy M. – Grantee Submission, 2021
In standard statistical data analysis, the effects of intervention or prevention efforts are evaluated in terms of variable relations. Results from application of regression-type methods suggest whether, overall, intervention is successful. In this article, we propose using configural frequency analysis (CFA) either in tandem with regression-type…
Descriptors: Intervention, Regression (Statistics), Data Analysis, Profiles
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Ben Stenhaug; Ben Domingue – Grantee Submission, 2022
The fit of an item response model is typically conceptualized as whether a given model could have generated the data. We advocate for an alternative view of fit, "predictive fit", based on the model's ability to predict new data. We derive two predictive fit metrics for item response models that assess how well an estimated item response…
Descriptors: Goodness of Fit, Item Response Theory, Prediction, Models
Declercq, Lies; Jamshidi, Laleh; Fernández-Castilla, Belen; Moeyaert, Mariola; Natasha, Beretvas S.; Ferron, John M.; Van den Noortgate, Wim – Grantee Submission, 2020
To conduct a multilevel meta-analysis of multiple single-case experimental design (SCED) studies, the individual participant data (IPD) can be analyzed in one or two stages. In the one-stage approach, a multilevel model is estimated based on the raw data. In the two-stage approach, an effect size is calculated for each participant and these effect…
Descriptors: Research Design, Data Analysis, Effect Size, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Previous Page | Next Page »
Pages: 1  |  2