Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 5 |
Descriptor
Source
Grantee Submission | 5 |
Author
Katz, Sandra | 5 |
Albacete, Patricia | 4 |
Jordan, Pamela | 4 |
Albacete, Patricia L. | 1 |
Chounta, Irene-Angelica | 1 |
Lipschultz, Michael | 1 |
Litman, Diane | 1 |
McLaren, Bruce M. | 1 |
Publication Type
Reports - Research | 4 |
Speeches/Meeting Papers | 3 |
Journal Articles | 1 |
Reports - Descriptive | 1 |
Education Level
High Schools | 3 |
Secondary Education | 3 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Pennsylvania | 2 |
Pennsylvania (Pittsburgh) | 2 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Albacete, Patricia; Jordan, Pamela; Katz, Sandra; Chounta, Irene-Angelica; McLaren, Bruce M. – Grantee Submission, 2019
This paper describes an initial pilot study of Rimac, a natural-language tutoring system for physics. Rimac uses a student model to guide decisions about "what content to discuss next" during reflective dialogues that are initiated after students solve quantitative physics problems, and "how much support to provide" during…
Descriptors: Natural Language Processing, Teaching Methods, Educational Technology, Technology Uses in Education
Jordan, Pamela; Albacete, Patricia; Katz, Sandra – Grantee Submission, 2016
Prior research aimed at identifying linguistic features of tutoring that predict learning found interactions between student characteristics (e.g., incoming knowledge level, gender, and affect) and learning. This paper addresses the question: "What do these interactions suggest for developing adaptive natural-language tutoring systems?"…
Descriptors: Intelligent Tutoring Systems, Tutoring, Natural Language Processing, Student Characteristics
Jordan, Pamela; Albacete, Patricia; Katz, Sandra – Grantee Submission, 2016
We explore the effectiveness of a simple algorithm for adaptively deciding whether to further decompose a step in a line of reasoning during tutorial dialogue. We compare two versions of a tutorial dialogue system, Rimac: one that always decomposes a step to its simplest sub-steps and one that adaptively decides to decompose a step based on a…
Descriptors: Algorithms, Decision Making, Intelligent Tutoring Systems, Scaffolding (Teaching Technique)
Lipschultz, Michael; Litman, Diane; Katz, Sandra; Albacete, Patricia; Jordan, Pamela – Grantee Submission, 2014
Post-problem reflective tutorial dialogues between human tutors and students are examined to predict when the tutor changed the level of abstraction from the student's preceding turn (i.e., used more general terms or more specific terms); such changes correlate with learning. Prior work examined lexical changes in abstraction. In this work, we…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Semantics, Abstract Reasoning
Katz, Sandra; Albacete, Patricia L. – Grantee Submission, 2013
For some time, it has been clear that students who are tutored generally learn more than students who experience classroom instruction (e.g., Bloom, 1984). Much research has been devoted to identifying features of tutorial dialogue that can explain its effectiveness, so that these features can be simulated in natural-language tutoring systems. One…
Descriptors: Rhetorical Theory, Tutoring, Intelligent Tutoring Systems, Secondary School Science