NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages
Saira Anwar; Ahmed Ashraf Butt; Muhsin Menekse – Grantee Submission, 2023
This study explored the effectiveness of scaffolding in students' reflection writing process. We compared two sections of an introductory computer programming course (N=188). In Section 1, students did not receive any scaffolding while generating reflections, whereas in Section 2, students were scaffolded during the reflection writing process.…
Descriptors: Scaffolding (Teaching Technique), Writing Instruction, Writing Processes, Writing (Composition)
Cai, Zhiqiang; Hu, Xiangen; Graesser, Arthur C. – Grantee Submission, 2019
Conversational Intelligent Tutoring Systems (ITSs) are expensive to develop. While simple online courseware could be easily authored by teachers, the authoring of conversational ITSs usually involves a team of experts with different expertise, including domain experts, linguists, instruction designers, programmers, artists, computer scientists,…
Descriptors: Programming, Intelligent Tutoring Systems, Courseware, Educational Technology
Cai, Zhiqiang; Gong, Yan; Qiu, Qizhi; Hu, Xiangen; Graesser, Art – Grantee Submission, 2016
AutoTutor uses conversational intelligent agents in learning environments. One of the major challenges in developing AutoTutor applications is to assess students' natural language answers to AutoTutor questions. We investigated an AutoTutor dataset with 3358 student answers to 49 AutoTutor questions. In comparisons with human ratings, we found…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Dialogs (Language), Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Olney, Andrew M.; Cade, Whitney L. – Grantee Submission, 2015
This paper proposes a methodology for authoring of intelligent tutoring systems using human computation. The methodology embeds authoring tasks in existing educational tasks to avoid the need for monetary authoring incentives. Because not all educational tasks are equally motivating, there is a tension between designing the human computation task…
Descriptors: Programming, Intelligent Tutoring Systems, Computation, Design
Benjamin D. Nye; Arthur C. Graesser; Xiangen Hu – Grantee Submission, 2014
AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Software, Artificial Intelligence