Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 9 |
Descriptor
Readability | 9 |
Natural Language Processing | 7 |
Artificial Intelligence | 6 |
Readability Formulas | 6 |
Computational Linguistics | 5 |
Cues | 4 |
Computer Software | 3 |
Correlation | 3 |
Profiles | 3 |
Classification | 2 |
Comparative Analysis | 2 |
More ▼ |
Source
Grantee Submission | 9 |
Author
McNamara, Danielle S. | 5 |
Balyan, Renu | 3 |
Danielle S. McNamara | 2 |
Jeevan Chapagain | 2 |
McCarthy, Kathryn S. | 2 |
Priti Oli | 2 |
Rabin Banjade | 2 |
Vasile Rus | 2 |
Allen, Laura K. | 1 |
Andrew J. Karter | 1 |
Arun-Balajiee… | 1 |
More ▼ |
Publication Type
Reports - Research | 8 |
Speeches/Meeting Papers | 4 |
Journal Articles | 1 |
Reports - Descriptive | 1 |
Tests/Questionnaires | 1 |
Education Level
Secondary Education | 2 |
Elementary Education | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Researchers | 1 |
Teachers | 1 |
Location
California | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Flesch Reading Ease Formula | 3 |
Flesch Kincaid Grade Level… | 2 |
Gates MacGinitie Reading Tests | 1 |
What Works Clearinghouse Rating
Linh Huynh; Danielle S. McNamara – Grantee Submission, 2025
We conducted two experiments to assess the alignment between Generative AI (GenAI) text personalization and hypothetical readers' profiles. In Experiment 1, four LLMs (i.e., Claude 3.5 Sonnet; Llama; Gemini Pro 1.5; ChatGPT 4) were prompted to tailor 10 science texts (i.e., biology, chemistry, physics) to accommodate four different profiles…
Descriptors: Natural Language Processing, Profiles, Individual Differences, Semantics

Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages
Renu Balyan; Danielle S. McNamara; Scott A. Crossley; William Brown; Andrew J. Karter; Dean Schillinger – Grantee Submission, 2022
Online patient portals that facilitate communication between patient and provider can improve patients' medication adherence and health outcomes. The effectiveness of such web-based communication measures can be influenced by the health literacy (HL) of a patient. In the context of diabetes, low HL is associated with severe hypoglycemia and high…
Descriptors: Computational Linguistics, Patients, Physicians, Information Security

Arun-Balajiee Lekshmi-Narayanan; Priti Oli; Jeevan Chapagain; Mohammad Hassany; Rabin Banjade; Vasile Rus – Grantee Submission, 2024
Worked examples, which present an explained code for solving typical programming problems are among the most popular types of learning content in programming classes. Most approaches and tools for presenting these examples to students are based on line-by-line explanations of the example code. However, instructors rarely have time to provide…
Descriptors: Coding, Computer Science Education, Computational Linguistics, Artificial Intelligence
Botarleanu, Robert-Mihai; Dascalu, Mihai; Watanabe, Micah; McNamara, Danielle S.; Crossley, Scott Andrew – Grantee Submission, 2021
The ability to objectively quantify the complexity of a text can be a useful indicator of how likely learners of a given level will comprehend it. Before creating more complex models of assessing text difficulty, the basic building block of a text consists of words and, inherently, its overall difficulty is greatly influenced by the complexity of…
Descriptors: Multilingualism, Language Acquisition, Age, Models
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2018
While hierarchical machine learning approaches have been used to classify texts into different content areas, this approach has, to our knowledge, not been used in the automated assessment of text difficulty. This study compared the accuracy of four classification machine learning approaches (flat, one-vs-one, one-vs-all, and hierarchical) using…
Descriptors: Artificial Intelligence, Classification, Comparative Analysis, Prediction
Schillinger, Dean; Balyan, Renu; Crossley, Scott A.; McNamara, Danielle S.; Liu, Jennifer Y.; Karter, Andrew J. – Grantee Submission, 2020
Objective: To develop novel, scalable, and valid literacy profiles for identifying limited health literacy patients by harnessing natural language processing. Data Source: With respect to the linguistic content, we analyzed 283 216 secure messages sent by 6941 diabetes patients to physicians within an integrated system's electronic portal.…
Descriptors: Literacy, Profiles, Computational Linguistics, Syntax
Allen, Laura K.; Snow, Erica L.; McNamara, Danielle S. – Grantee Submission, 2016
A commonly held belief among educators, researchers, and students is that high-quality texts are easier to read than low-quality texts, as they contain more engaging narrative and story-like elements. Interestingly, these assumptions have typically failed to be supported by the literature on writing. Previous research suggests that higher quality…
Descriptors: Role, Writing (Composition), Natural Language Processing, Hypothesis Testing