NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhanxia Yang; Patricia Moore Shaffer; Courtney Hagan; Parastu Dubash; Marina Bers – Grantee Submission, 2023
The aim of this study was to explore how the Coding as Another Language (CAL) curriculum, developed by Boston College's DevTech Research Group and utilizing the ScratchJr app, impacted students' computational thinking, coding skills, and reading comprehension. To accomplish this, the research team randomly assigned thirteen schools in a…
Descriptors: Coding, Second Language Learning, Curriculum Development, Programming Languages
Corlatescu, Dragos-Georgian; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2021
Reading comprehension is key to knowledge acquisition and to reinforcing memory for previous information. While reading, a mental representation is constructed in the reader's mind. The mental model comprises the words in the text, the relations between the words, and inferences linking to concepts in prior knowledge. The automated model of…
Descriptors: Reading Comprehension, Memory, Inferences, Syntax
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Olney, Andrew M.; Cade, Whitney L. – Grantee Submission, 2015
This paper proposes a methodology for authoring of intelligent tutoring systems using human computation. The methodology embeds authoring tasks in existing educational tasks to avoid the need for monetary authoring incentives. Because not all educational tasks are equally motivating, there is a tension between designing the human computation task…
Descriptors: Programming, Intelligent Tutoring Systems, Computation, Design
Benjamin D. Nye; Arthur C. Graesser; Xiangen Hu – Grantee Submission, 2014
AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Software, Artificial Intelligence