NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Moeyaert, Mariola; Yang, Panpan; Xu, Xinyun; Kim, Esther – Grantee Submission, 2021
Hierarchical linear modeling (HLM) has been recommended as a meta-analytic technique for the quantitative synthesis of single-case experimental design (SCED) studies. The HLM approach is flexible and can model a variety of different SCED data complexities, such as intervention heterogeneity. A major advantage of using HLM is that participant…
Descriptors: Meta Analysis, Case Studies, Research Design, Hierarchical Linear Modeling
Moeyaert, Mariola; Yang, Panpan; Xu, Xinyun – Grantee Submission, 2021
This study investigated the power of two-level hierarchical linear modeling (HLM) to explain variability in intervention effectiveness between participants in context of single-case experimental design (SCED) research. HLM is a flexible technique that allows the inclusion of participant characteristics (e.g., age, gender, and disability types) as…
Descriptors: Hierarchical Linear Modeling, Intervention, Research Design, Participant Characteristics
Moeyaert, Mariola; Yang, Panpan – Grantee Submission, 2021
This study introduces an innovative meta-analytic approach, two-stage multilevel meta-analysis that considers the hierarchical structure of single-case experimental design (SCED) data. This approach is unique as it is suitable to include moderators at the intervention level, participant level, and study level, and is therefore especially…
Descriptors: Hierarchical Linear Modeling, Meta Analysis, Research Design, Case Studies
Moeyaert, Mariola; Akhmedjanova, Diana; Ferron, John; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The methodology of single-case experimental designs (SCED) has been expanding its efforts toward rigorous design tactics to address a variety of research questions related to intervention effectiveness. Effect size indicators appropriate to quantify the magnitude and the direction of interventions have been recommended and intensively studied for…
Descriptors: Effect Size, Research Methodology, Research Design, Hierarchical Linear Modeling
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)
Enders, Craig K.; Hayes, Timothy; Du, Han – Grantee Submission, 2018
Literature addressing missing data handling for random coefficient models is particularly scant, and the few studies to date have focused on the fully conditional specification framework and "reverse random coefficient" imputation. Although it has not received much attention in the literature, a joint modeling strategy that uses random…
Descriptors: Data Analysis, Statistical Bias, Sample Size, Correlation
Ottley, Jennifer Riggie; Ferron, John M.; Hanline, Mary Frances – Grantee Submission, 2016
The purpose of this study was to explain the variability in data collected from a single-case design study and to identify predictors of communicative outcomes for children with developmental delays or disabilities (n = 4). Using SAS® University Edition, we fit multilevel models with time nested within children. Children's level of baseline…
Descriptors: Communication (Thought Transfer), Hierarchical Linear Modeling, Research Design, Predictor Variables
Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C. – Grantee Submission, 2015
This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem solving and metacognitive…
Descriptors: Middle School Teachers, Middle School Students, Grade 7, Mathematics Teachers