NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Linh Huynh; Danielle S. McNamara – Grantee Submission, 2025
We conducted two experiments to assess the alignment between Generative AI (GenAI) text personalization and hypothetical readers' profiles. In Experiment 1, four LLMs (i.e., Claude 3.5 Sonnet; Llama; Gemini Pro 1.5; ChatGPT 4) were prompted to tailor 10 science texts (i.e., biology, chemistry, physics) to accommodate four different profiles…
Descriptors: Natural Language Processing, Profiles, Individual Differences, Semantics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhongdi Wu; Eric Larson; Makoto Sano; Doris Baker; Nathan Gage; Akihito Kamata – Grantee Submission, 2023
In this investigation we propose new machine learning methods for automated scoring models that predict the vocabulary acquisition in science and social studies of second grade English language learners, based upon free-form spoken responses. We evaluate performance on an existing dataset and use transfer learning from a large pre-trained language…
Descriptors: Prediction, Vocabulary Development, English (Second Language), Second Language Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Huang, Eddie; Valdiviejas, Hannah; Bosch, Nigel – Grantee Submission, 2019
Metacognition is a valuable tool for learning, since it is closely related to self-regulation and awareness of one's own affect. However, methods for automatically detecting and studying metacognition are scarce. Thus, in this paper we describe an algorithm for automatic detection of metacognitive language in writing. We analyzed text from the…
Descriptors: Metacognition, Mathematics, Language Usage, Writing (Composition)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Albacete, Patricia; Jordan, Pamela; Katz, Sandra; Chounta, Irene-Angelica; McLaren, Bruce M. – Grantee Submission, 2019
This paper describes an initial pilot study of Rimac, a natural-language tutoring system for physics. Rimac uses a student model to guide decisions about "what content to discuss next" during reflective dialogues that are initiated after students solve quantitative physics problems, and "how much support to provide" during…
Descriptors: Natural Language Processing, Teaching Methods, Educational Technology, Technology Uses in Education
Allen, Laura K.; Mills, Caitlin; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2019
This study examines the extent to which instructions to self-explain vs. "other"-explain a text lead readers to produce different forms of explanations. Natural language processing was used to examine the content and characteristics of the explanations produced as a function of instruction condition. Undergraduate students (n = 146)…
Descriptors: Language Processing, Science Instruction, Computational Linguistics, Teaching Methods
Katz, Sandra; Albacete, Patricia L. – Grantee Submission, 2013
For some time, it has been clear that students who are tutored generally learn more than students who experience classroom instruction (e.g., Bloom, 1984). Much research has been devoted to identifying features of tutorial dialogue that can explain its effectiveness, so that these features can be simulated in natural-language tutoring systems. One…
Descriptors: Rhetorical Theory, Tutoring, Intelligent Tutoring Systems, Secondary School Science