Publication Date
In 2025 | 2 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 10 |
Descriptor
Computer Software | 10 |
Semantics | 10 |
Natural Language Processing | 8 |
Artificial Intelligence | 6 |
Computational Linguistics | 5 |
Reading Comprehension | 5 |
Models | 4 |
Cues | 3 |
Accuracy | 2 |
Algorithms | 2 |
Classification | 2 |
More ▼ |
Source
Grantee Submission | 10 |
Author
Publication Type
Reports - Research | 6 |
Journal Articles | 4 |
Speeches/Meeting Papers | 4 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Tests/Questionnaires | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Hadis Anahideh; Nazanin Nezami; Abolfazl Asudeh – Grantee Submission, 2025
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness.…
Descriptors: Correlation, Measurement Techniques, Guidelines, Semantics
Linh Huynh; Danielle S. McNamara – Grantee Submission, 2025
We conducted two experiments to assess the alignment between Generative AI (GenAI) text personalization and hypothetical readers' profiles. In Experiment 1, four LLMs (i.e., Claude 3.5 Sonnet; Llama; Gemini Pro 1.5; ChatGPT 4) were prompted to tailor 10 science texts (i.e., biology, chemistry, physics) to accommodate four different profiles…
Descriptors: Natural Language Processing, Profiles, Individual Differences, Semantics
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2021
Text summarization is an effective reading comprehension strategy. However, summary evaluation is complex and must account for various factors including the summary and the reference text. This study examines a corpus of approximately 3,000 summaries based on 87 reference texts, with each summary being manually scored on a 4-point Likert scale.…
Descriptors: Computer Assisted Testing, Scoring, Natural Language Processing, Computer Software
Corlatescu, Dragos-Georgian; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2021
Reading comprehension is key to knowledge acquisition and to reinforcing memory for previous information. While reading, a mental representation is constructed in the reader's mind. The mental model comprises the words in the text, the relations between the words, and inferences linking to concepts in prior knowledge. The automated model of…
Descriptors: Reading Comprehension, Memory, Inferences, Syntax
Crossley, Scott; Wan, Qian; Allen, Laura; McNamara, Danielle – Grantee Submission, 2021
Synthesis writing is widely taught across domains and serves as an important means of assessing writing ability, text comprehension, and content learning. Synthesis writing differs from other types of writing in terms of both cognitive and task demands because it requires writers to integrate information across source materials. However, little is…
Descriptors: Writing Skills, Cognitive Processes, Essays, Cues
Patience Stevens; David Plaut – Grantee Submission, 2020
The statistical structure of a given language likely drives our sensitivity to words' morphological structure. The current work begins to investigate to what degree morphological processing effects observed in visual word recognition can be attributed to statistical regularities between orthography and semantics in English, without any prior…
Descriptors: Reading Processes, Word Recognition, Semantics, Written Language
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Cai, Zhiqiang; Siebert-Evenstone, Amanda; Eagan, Brendan; Shaffer, David Williamson; Hu, Xiangen; Graesser, Arthur C. – Grantee Submission, 2019
Coding is a process of assigning meaning to a given piece of evidence. Evidence may be found in a variety of data types, including documents, research interviews, posts from social media, conversations from learning platforms, or any source of data that may provide insights for the questions under qualitative study. In this study, we focus on text…
Descriptors: Semantics, Computational Linguistics, Evidence, Coding
Crossley, Scott A.; Kyle, Kristopher; McNamara, Danielle S. – Grantee Submission, 2015
This study investigates the relative efficacy of using linguistic micro-features, the aggregation of such features, and a combination of micro-features and aggregated features in developing automatic essay scoring (AES) models. Although the use of aggregated features is widespread in AES systems (e.g., e-rater; Intellimetric), very little…
Descriptors: Essays, Scoring, Feedback (Response), Writing Evaluation
Benjamin D. Nye; Arthur C. Graesser; Xiangen Hu – Grantee Submission, 2014
AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Software, Artificial Intelligence