Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 7 |
Descriptor
Source
Grantee Submission | 7 |
Author
Gelman, Andrew | 2 |
Goodrich, Ben | 2 |
Zhang, Zhiyong | 2 |
Betancourt, Michael | 1 |
Brubaker, Marcus A. | 1 |
Cai, Li | 1 |
Cain, Meghan K. | 1 |
Carpenter, Bob | 1 |
Dasgupta, Tirthankar | 1 |
Ding, Peng | 1 |
Grimm, Kevin J. | 1 |
More ▼ |
Publication Type
Reports - Research | 6 |
Journal Articles | 1 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 2 |
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Li, Zhen; Cai, Li – Grantee Submission, 2017
In standard item response theory (IRT) applications, the latent variable is typically assumed to be normally distributed. If the normality assumption is violated, the item parameter estimates can become biased. Summed score likelihood based statistics may be useful for testing latent variable distribution fit. We develop Satorra-Bentler type…
Descriptors: Scores, Goodness of Fit, Statistical Distributions, Item Response Theory
Ding, Peng; Dasgupta, Tirthankar – Grantee Submission, 2017
Fisher randomization tests for Neyman's null hypothesis of no average treatment effects are considered in a finite population setting associated with completely randomized experiments with more than two treatments. The consequences of using the F statistic to conduct such a test are examined both theoretically and computationally, and it is argued…
Descriptors: Statistical Analysis, Statistical Inference, Causal Models, Error Patterns
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Cain, Meghan K.; Zhang, Zhiyong; Yuan, Ke-Hai – Grantee Submission, 2017
Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of…
Descriptors: Multivariate Analysis, Probability, Statistical Distributions, Psychological Studies
Liu, Haiyan; Zhang, Zhiyong; Grimm, Kevin J. – Grantee Submission, 2016
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due…
Descriptors: Bayesian Statistics, Computation, Statistical Analysis, Growth Models
Kropko, Jonathan; Goodrich, Ben; Gelman, Andrew; Hill, Jennifer – Grantee Submission, 2014
We consider the relative performance of two common approaches to multiple imputation (MI): joint multivariate normal (MVN) MI, in which the data are modeled as a sample from a joint MVN distribution; and conditional MI, in which each variable is modeled conditionally on all the others. In order to use the multivariate normal distribution,…
Descriptors: Statistical Analysis, Multivariate Analysis, Accuracy, Data