NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Grantee Submission18
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Punya Mishra; Danielle S. McNamara; Gregory Goodwin; Diego Zapata-Rivera – Grantee Submission, 2025
The advent of Large Language Models (LLMs) has fundamentally disrupted our thinking about educational technology. Their ability to engage in natural dialogue, provide contextually relevant responses, and adapt to learner needs has led many to envision them as powerful tools for personalized learning. This emergence raises important questions about…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Technology Uses in Education, Educational Technology
Muhsin Menekse – Grantee Submission, 2023
Generative artificial intelligence (AI) technologies, such as large language models (LLMs) and diffusion model image and video generators, can transform learning and teaching experiences by providing students and instructors with access to a vast amount of information and create innovative learning and teaching materials in a very efficient way…
Descriptors: Educational Trends, Engineering Education, Artificial Intelligence, Technology Uses in Education
Peer reviewed Peer reviewed
Ha Tien Nguyen; Conrad Borchers; Meng Xia; Vincent Aleven – Grantee Submission, 2024
Intelligent tutoring systems (ITS) can help students learn successfully, yet little work has explored the role of caregivers in shaping that success. Past interventions to support caregivers in supporting their child's homework have been largely disjunct from educational technology. The paper presents prototyping design research with nine middle…
Descriptors: Middle School Mathematics, Intelligent Tutoring Systems, Caregivers, Caregiver Attitudes
Bogdan Nicula; Marilena Panaite; Tracy Arner; Renu Balyan; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2023
Self-explanation practice is an effective method to support students in better understanding complex texts. This study focuses on automatically assessing the comprehension strategies employed by readers while understanding STEM texts. Data from 3 datasets (N = 11,833) with self-explanations annotated on different comprehension strategies (i.e.,…
Descriptors: Reading Strategies, Reading Comprehension, Metacognition, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
HyeJin Hwang; Seohyeon Choi; Manjary Guha; Kristen McMaster; Rina Harsch; Panayiota Kendeou – Grantee Submission, 2024
In the current study, we investigated the role of executive functions in explaining how word recognition and language comprehension jointly predict reading comprehension in multilingual and monolingual students (Grades 1 and 2). Specifically, mediation and moderation models were tested and compared to offer a more nuanced understanding of the role…
Descriptors: Executive Function, Reading Comprehension, Word Recognition, Multilingualism
McNamara, Danielle S. – Grantee Submission, 2021
An overarching motivation driving my research has been to further our theoretical understanding of how readers successfully comprehend challenging text. This article describes the theoretical origins of this research program and my quest to understand comprehension processes through the use of technology. Coh-Metrix was developed to measure, and…
Descriptors: Educational Research, Reading Comprehension, Difficulty Level, Educational Technology
Dascalu, Maria-Dorinela; Ruseti, Stefan; Dascalu, Mihai; McNamara, Danielle S.; Carabas, Mihai; Rebedea, Traian – Grantee Submission, 2021
The COVID-19 pandemic has changed the entire world, while the impact and usage of online learning environments has greatly increased. This paper presents a new version of the ReaderBench framework, grounded in Cohesion Network Analysis, which can be used to evaluate the online activity of students as a plug-in feature to Moodle. A Recurrent Neural…
Descriptors: COVID-19, Pandemics, Integrated Learning Systems, School Closing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Albacete, Patricia; Jordan, Pamela; Katz, Sandra; Chounta, Irene-Angelica; McLaren, Bruce M. – Grantee Submission, 2019
This paper describes an initial pilot study of Rimac, a natural-language tutoring system for physics. Rimac uses a student model to guide decisions about "what content to discuss next" during reflective dialogues that are initiated after students solve quantitative physics problems, and "how much support to provide" during…
Descriptors: Natural Language Processing, Teaching Methods, Educational Technology, Technology Uses in Education
Graesser, Arthur C. – Grantee Submission, 2016
AutoTutor helps students learn by holding a conversation in natural language. AutoTutor is adaptive to the learners' actions, verbal contributions, and in some systems their emotions. Many of AutoTutor's conversation patterns simulate human tutoring, but other patterns implement ideal pedagogies that open the door to computer tutors eclipsing…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Communication Strategies, Dialogs (Language)
Allen, Laura K.; Likens, Aaron D.; McNamara, Danielle S. – Grantee Submission, 2018
The assessment of argumentative writing generally includes analyses of the specific linguistic and rhetorical features contained in the individual essays produced by students. However, researchers have recently proposed that an individual's ability to flexibly adapt the linguistic properties of their writing may more accurately capture their…
Descriptors: Writing (Composition), Persuasive Discourse, Essays, Language Usage
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jackson, G. Tanner; Boonthum-Denecke, Chutima; McNamara, Danielle S. – Grantee Submission, 2015
Intelligent Tutoring Systems (ITSs) are situated in a potential struggle between effective pedagogy and system enjoyment and engagement. iSTART, a reading strategy tutoring system in which students practice generating self-explanations and using reading strategies, employs two devices to engage the user. The first is natural language processing…
Descriptors: Natural Language Processing, Feedback (Response), Intelligent Tutoring Systems, Reading Strategies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Crossley, Scott; Liu, Ran; McNamara, Danielle – Grantee Submission, 2017
A number of studies have demonstrated links between linguistic knowledge and performance in math. Studies examining these links in first language speakers of English have traditionally relied on correlational analyses between linguistic knowledge tests and standardized math tests. For second language (L2) speakers, the majority of studies have…
Descriptors: Predictor Variables, Mathematics Achievement, English (Second Language), Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Crossley, Scott; Allen, Laura K.; Snow, Erica L.; McNamara, Danielle S. – Grantee Submission, 2015
This study investigates a new approach to automatically assessing essay quality that combines traditional approaches based on assessing textual features with new approaches that measure student attributes such as demographic information, standardized test scores, and survey results. The results demonstrate that combining both text features and…
Descriptors: Automation, Scoring, Essays, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Allen, Laura K.; Snow, Erica L.; McNamara, Danielle S. – Grantee Submission, 2014
In the current study, we utilize natural language processing techniques to examine relations between the linguistic properties of students' self-explanations and their reading comprehension skills. Linguistic features of students' aggregated self-explanations were analyzed using the Linguistic Inquiry and Word Count (LIWC) software. Results…
Descriptors: Natural Language Processing, Reading Comprehension, Linguistics, Predictor Variables
Snow, Erica L.; Allen, Laura K.; Jacovina, Matthew E.; Crossley, Scott A.; Perret, Cecile A.; McNamara, Danielle S. – Grantee Submission, 2015
Writing researchers have suggested that students who are perceived as strong writers (i.e., those who generate texts rated as high quality) demonstrate flexibility in their writing style. While anecdotally this has been a commonly held belief among researchers and educators, there is little empirical research to support this claim. This study…
Descriptors: Writing (Composition), Writing Strategies, Hypothesis Testing, Essays
Previous Page | Next Page »
Pages: 1  |  2