Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Algorithms | 5 |
Test Items | 5 |
Item Analysis | 3 |
Simulation | 3 |
Accuracy | 2 |
Achievement Tests | 2 |
Data Analysis | 2 |
Error of Measurement | 2 |
Foreign Countries | 2 |
International Assessment | 2 |
Item Response Theory | 2 |
More ▼ |
Source
Grantee Submission | 5 |
Author
Chun Wang | 3 |
Gongjun Xu | 3 |
Andrew M. Olney | 1 |
Chengyu Cui | 1 |
Jing Lu | 1 |
Jingchen Liu | 1 |
Jiwei Zhang | 1 |
Weicong Lyu | 1 |
Xiaoou Li | 1 |
Xue Wang | 1 |
Yunxiao Chen | 1 |
More ▼ |
Publication Type
Reports - Research | 4 |
Journal Articles | 1 |
Reports - Evaluative | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Elementary Secondary Education | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Big Five Inventory | 1 |
Eysenck Personality Inventory | 1 |
Program for International… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Weicong Lyu; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Data harmonization is an emerging approach to strategically combining data from multiple independent studies, enabling addressing new research questions that are not answerable by a single contributing study. A fundamental psychometric challenge for data harmonization is to create commensurate measures for the constructs of interest across…
Descriptors: Data Analysis, Test Items, Psychometrics, Item Response Theory
Andrew M. Olney – Grantee Submission, 2023
Multiple choice questions are traditionally expensive to produce. Recent advances in large language models (LLMs) have led to fine-tuned LLMs that generate questions competitive with human-authored questions. However, the relative capabilities of ChatGPT-family models have not yet been established for this task. We present a carefully-controlled…
Descriptors: Test Construction, Multiple Choice Tests, Test Items, Algorithms
Chengyu Cui; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Multidimensional item response theory (MIRT) models have generated increasing interest in the psychometrics literature. Efficient approaches for estimating MIRT models with dichotomous responses have been developed, but constructing an equally efficient and robust algorithm for polytomous models has received limited attention. To address this gap,…
Descriptors: Item Response Theory, Accuracy, Simulation, Psychometrics
A Sequential Bayesian Changepoint Detection Procedure for Aberrant Behaviors in Computerized Testing
Jing Lu; Chun Wang; Jiwei Zhang; Xue Wang – Grantee Submission, 2023
Changepoints are abrupt variations in a sequence of data in statistical inference. In educational and psychological assessments, it is pivotal to properly differentiate examinees' aberrant behaviors from solution behavior to ensure test reliability and validity. In this paper, we propose a sequential Bayesian changepoint detection algorithm to…
Descriptors: Bayesian Statistics, Behavior Patterns, Computer Assisted Testing, Accuracy
Yunxiao Chen; Xiaoou Li; Jingchen Liu; Gongjun Xu; Zhiliang Ying – Grantee Submission, 2017
Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class…
Descriptors: Item Analysis, Classification, Graphs, Test Items