Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Algorithms | 4 |
Correlation | 4 |
Validity | 4 |
Models | 3 |
Algebra | 2 |
Anxiety | 2 |
Comparative Analysis | 2 |
Computer Assisted Instruction | 2 |
Computer Games | 2 |
Concept Formation | 2 |
Interaction Process Analysis | 2 |
More ▼ |
Source
Grantee Submission | 4 |
Author
Amisha Jindal | 2 |
Ashish Gurung | 2 |
Erin Ottmar | 2 |
Ji-Eun Lee | 2 |
Reilly Norum | 2 |
Sanika Nitin Patki | 2 |
Abolfazl Asudeh | 1 |
Edgar C. Merkle | 1 |
Hadis Anahideh | 1 |
Mauricio Garnier-Villarreal | 1 |
Nazanin Nezami | 1 |
More ▼ |
Publication Type
Reports - Research | 3 |
Journal Articles | 2 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
Hadis Anahideh; Nazanin Nezami; Abolfazl Asudeh – Grantee Submission, 2025
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness.…
Descriptors: Correlation, Measurement Techniques, Guidelines, Semantics
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games