Publication Date
In 2025 | 3 |
Since 2024 | 12 |
Since 2021 (last 5 years) | 16 |
Since 2016 (last 10 years) | 18 |
Since 2006 (last 20 years) | 19 |
Descriptor
Source
IEEE Transactions on Learning… | 19 |
Author
Adamo-Villani, Nicoletta | 1 |
Ahmad Chaddad | 1 |
Albornoz-De Luise, Romina… | 1 |
Aldabe, Itziar | 1 |
Andres Neyem | 1 |
Arevalillo-Herraez, Miguel | 1 |
Arnau, David | 1 |
Arruarte, Ana | 1 |
Behzad Mirzababaei | 1 |
Bihao Hu | 1 |
Carlos Paredes | 1 |
More ▼ |
Publication Type
Journal Articles | 19 |
Reports - Research | 16 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 4 |
Secondary Education | 3 |
Elementary Education | 2 |
High Schools | 2 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Albornoz-De Luise, Romina Soledad; Arevalillo-Herraez, Miguel; Arnau, David – IEEE Transactions on Learning Technologies, 2023
In this article, we analyze the potential of conversational frameworks to support the adaptation of existing tutoring systems to a natural language form of interaction. We have based our research on a pilot study, in which the open-source machine learning framework Rasa has been used to build a conversational agent that interacts with an existing…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Artificial Intelligence, Models
Putnikovic, Marko; Jovanovic, Jelena – IEEE Transactions on Learning Technologies, 2023
Automatic grading of short answers is an important task in computer-assisted assessment (CAA). Recently, embeddings, as semantic-rich textual representations, have been increasingly used to represent short answers and predict the grade. Despite the recent trend of applying embeddings in automatic short answer grading (ASAG), there are no…
Descriptors: Automation, Computer Assisted Testing, Grading, Natural Language Processing
Ahmad Chaddad; Yuchen Jiang – IEEE Transactions on Learning Technologies, 2025
The concept of the Metaverse, viewed as the ultimate manifestation of the Internet, has gained significant attention due to rapid advances in technologies such as the Internet of Things (IoT) and blockchain. Acting as a bridge between the physical and virtual worlds, the Metaverse has the potential to offer remarkable experiences to its users.…
Descriptors: Internet, Medical Education, Instructional Effectiveness, Artificial Intelligence
Bihao Hu; Longwei Zheng; Jiayi Zhu; Lishan Ding; Yilei Wang; Xiaoqing Gu – IEEE Transactions on Learning Technologies, 2024
This study explores and analyzes the specific performance of large language models (LLMs) in instructional design, aiming to unveil their potential strengths and possible weaknesses. Recently, the influence of LLMs has gradually increased in multiple fields, yet exploratory research on their application in education remains relatively scarce. In…
Descriptors: Artificial Intelligence, Natural Language Processing, Instructional Design, Prompting
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Jian Liao; Linrong Zhong; Longting Zhe; Handan Xu; Ming Liu; Tao Xie – IEEE Transactions on Learning Technologies, 2024
ChatGPT has received considerable attention in education, particularly in programming education because of its capabilities in automated code generation and program repairing and scoring. However, few empirical studies have investigated the use of ChatGPT to customize a learning system for scaffolding students' computational thinking. Therefore,…
Descriptors: Scaffolding (Teaching Technique), Thinking Skills, Computation, Artificial Intelligence
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Jionghao Lin; Wei Tan; Lan Du; Wray Buntine; David Lang; Dragan Gasevic; Guanliang Chen – IEEE Transactions on Learning Technologies, 2024
Automating the classification of instructional strategies from a large-scale online tutorial dialogue corpus is indispensable to the design of dialogue-based intelligent tutoring systems. Despite many existing studies employing supervised machine learning (ML) models to automate the classification process, they concluded that building a…
Descriptors: Classification, Dialogs (Language), Teaching Methods, Computer Assisted Instruction
Andres Neyem; Luis A. Gonzalez; Marcelo Mendoza; Juan Pablo Sandoval Alcocer; Leonardo Centellas; Carlos Paredes – IEEE Transactions on Learning Technologies, 2024
Software assistants have significantly impacted software development for both practitioners and students, particularly in capstone projects. The effectiveness of these tools varies based on their knowledge sources; assistants with localized domain-specific knowledge may have limitations, while tools, such as ChatGPT, using broad datasets, might…
Descriptors: Computer Software, Artificial Intelligence, Intelligent Tutoring Systems, Capstone Experiences
Gyeong-Geon Lee; Xiaoming Zhai – IEEE Transactions on Learning Technologies, 2024
While ongoing efforts have continuously emphasized the integration of ChatGPT with science teaching and learning, there are limited empirical studies exploring its actual utility in the classroom. This study aims to fill this gap by analyzing the lesson plans developed by 29 pre-service elementary teachers and assessing how they integrated ChatGPT…
Descriptors: Artificial Intelligence, Natural Language Processing, Science Education, Preservice Teachers
Hsu, Hao-Hsuan; Huang, Nen-Fu – IEEE Transactions on Learning Technologies, 2022
This article introduces Xiao-Shih, the first intelligent question answering bot on Chinese-based massive open online courses (MOOCs). Question answering is critical for solving individual problems. However, instructors on MOOCs must respond to many questions, and learners must wait a long time for answers. To address this issue, Xiao-Shih…
Descriptors: Foreign Countries, Artificial Intelligence, Online Courses, Natural Language Processing
Larranaga, Mikel; Aldabe, Itziar; Arruarte, Ana; Elorriaga, Jon A.; Maritxalar, Montse – IEEE Transactions on Learning Technologies, 2022
In a concept learning scenario, any technology-supported learning system must provide students with mechanisms that help them with the acquisition of the concepts to be learned. For the technology-supported learning systems to be successful in this task, the development of didactic material is crucial--a hard task that could be alleviated by means…
Descriptors: Computer Assisted Testing, Science Tests, Multiple Choice Tests, Textbooks
Yu Bai; Jun Li; Jun Shen; Liang Zhao – IEEE Transactions on Learning Technologies, 2024
The potential of artificial intelligence (AI) in transforming education has received considerable attention. This study aims to explore the potential of large language models (LLMs) in assisting students with studying and passing standardized exams, while many people think it is a hype situation. Using primary education as an example, this…
Descriptors: Instructional Effectiveness, Artificial Intelligence, Technology Uses in Education, Natural Language Processing
Emiko Tsutsumi; Yiming Guo; Ryo Kinoshita; Maomi Ueno – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing (KT), the task of tracking the knowledge state of a student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines item response theory (IRT) with a deep learning method, provides superior performance. It can express the abilities of each student…
Descriptors: Item Response Theory, Academic Ability, Intelligent Tutoring Systems, Artificial Intelligence
Yishen Song; Qianta Zhu; Huaibo Wang; Qinhua Zheng – IEEE Transactions on Learning Technologies, 2024
Manually scoring and revising student essays has long been a time-consuming task for educators. With the rise of natural language processing techniques, automated essay scoring (AES) and automated essay revising (AER) have emerged to alleviate this burden. However, current AES and AER models require large amounts of training data and lack…
Descriptors: Scoring, Essays, Writing Evaluation, Computer Software
Previous Page | Next Page ยป
Pages: 1 | 2