Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 10 |
Descriptor
Source
IEEE Transactions on Learning… | 10 |
Author
Publication Type
Journal Articles | 10 |
Reports - Research | 7 |
Reports - Evaluative | 2 |
Information Analyses | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 3 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Po-Chun Huang; Ying-Hong Chan; Ching-Yu Yang; Hung-Yuan Chen; Yao-Chung Fan – IEEE Transactions on Learning Technologies, 2024
Question generation (QG) task plays a crucial role in adaptive learning. While significant QG performance advancements are reported, the existing QG studies are still far from practical usage. One point that needs strengthening is to consider the generation of question group, which remains untouched. For forming a question group, intrafactors…
Descriptors: Automation, Test Items, Computer Assisted Testing, Test Construction
Putnikovic, Marko; Jovanovic, Jelena – IEEE Transactions on Learning Technologies, 2023
Automatic grading of short answers is an important task in computer-assisted assessment (CAA). Recently, embeddings, as semantic-rich textual representations, have been increasingly used to represent short answers and predict the grade. Despite the recent trend of applying embeddings in automatic short answer grading (ASAG), there are no…
Descriptors: Automation, Computer Assisted Testing, Grading, Natural Language Processing
Qiao, Chen; Hu, Xiao – IEEE Transactions on Learning Technologies, 2023
Free text answers to short questions can reflect students' mastery of concepts and their relationships relevant to learning objectives. However, automating the assessment of free text answers has been challenging due to the complexity of natural language. Existing studies often predict the scores of free text answers in a "black box"…
Descriptors: Computer Assisted Testing, Automation, Test Items, Semantics
C. H., Dhawaleswar Rao; Saha, Sujan Kumar – IEEE Transactions on Learning Technologies, 2023
Multiple-choice question (MCQ) plays a significant role in educational assessment. Automatic MCQ generation has been an active research area for years, and many systems have been developed for MCQ generation. Still, we could not find any system that generates accurate MCQs from school-level textbook contents that are useful in real examinations.…
Descriptors: Multiple Choice Tests, Computer Assisted Testing, Automation, Test Items
Haering, Marlo; Bano, Muneera; Zowghi, Didar; Kearney, Matthew; Maalej, Walid – IEEE Transactions on Learning Technologies, 2021
With the vast number of apps and the complexity of their features, it is becoming challenging for teachers to select a suitable learning app for their courses. Several evaluation frameworks have been proposed in the literature to assist teachers with this selection. The iPAC framework is a well-established mobile learning framework highlighting…
Descriptors: Automation, Courseware, Computer Software Evaluation, Computer Software Selection
Rao, Dhawaleswar; Saha, Sujan Kumar – IEEE Transactions on Learning Technologies, 2020
Automatic multiple choice question (MCQ) generation from a text is a popular research area. MCQs are widely accepted for large-scale assessment in various domains and applications. However, manual generation of MCQs is expensive and time-consuming. Therefore, researchers have been attracted toward automatic MCQ generation since the late 90's.…
Descriptors: Multiple Choice Tests, Test Construction, Automation, Computer Software
Sanchez-Ferreres, Josep; Delicado, Luis; Andaloussi, Amine Abbab; Burattin, Andrea; Calderon-Ruiz, Guillermo; Weber, Barbara; Carmona, Josep; Padro, Lluis – IEEE Transactions on Learning Technologies, 2020
The creation of a process model is primarily a formalization task that faces the challenge of constructing a syntactically correct entity, which accurately reflects the semantics of reality, and is understandable to the model reader. This article proposes a framework called "Model Judge," focused toward the two main actors in the process…
Descriptors: Models, Automation, Validity, Natural Language Processing
Kappagantula, Sri Rama Kartheek; Adamo-Villani, Nicoletta; Wu, Meng-Lin; Popescu, Voicu – IEEE Transactions on Learning Technologies, 2020
We present a system that automatically generates deictic gestures for animated pedagogical agents (APAs). The system takes audio and text as input, which define what the APA has to say, and generates animated gestures based on a set of rules. The automatically generated gestures point to the exact locations of elements on a whiteboard nearby the…
Descriptors: Animation, Nonverbal Communication, Lecture Method, Video Technology
Liu, Ming; Rus, Vasile; Liu, Li – IEEE Transactions on Learning Technologies, 2017
Question generation is an emerging research area of artificial intelligence in education. Question authoring tools are important in educational technologies, e.g., intelligent tutoring systems, as well as in dialogue systems. Approaches to generate factual questions, i.e., questions that have concrete answers, mainly make use of the syntactical…
Descriptors: Chinese, Questioning Techniques, Automation, Natural Language Processing
Liu, Ming; Calvo, R. A.; Aditomo, A.; Pizzato, L. A. – IEEE Transactions on Learning Technologies, 2012
In this paper, we present a novel approach for semiautomatic question generation to support academic writing. Our system first extracts key phrases from students' literature review papers. Each key phrase is matched with a Wikipedia article and classified into one of five abstract concept categories: Research Field, Technology, System, Term, and…
Descriptors: Foreign Countries, Computer Assisted Instruction, Web 2.0 Technologies, Automation