Publication Date
In 2025 | 2 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Source
IEEE Transactions on Learning… | 7 |
Author
Arthur C. Graesser | 1 |
Buder, Jurgen | 1 |
Chen, Enhong | 1 |
Conrad Borchers | 1 |
Daniel Weitekamp | 1 |
Deliang Wang | 1 |
Emiko Tsutsumi | 1 |
Enhong Chen | 1 |
Hao Zhou | 1 |
Huang, Zhenya | 1 |
Jianfei Zhang | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 7 |
Education Level
Higher Education | 1 |
Audience
Location
Germany | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yu Lu; Deliang Wang; Penghe Chen; Zhi Zhang – IEEE Transactions on Learning Technologies, 2024
Amid the rapid evolution of artificial intelligence (AI), the intricate model structures and opaque decision-making processes of AI-based systems have raised the trustworthy issues in education. We, therefore, first propose a novel three-layer knowledge tracing model designed to address trustworthiness for an intelligent tutoring system. Each…
Descriptors: Models, Intelligent Tutoring Systems, Artificial Intelligence, Technology Uses in Education
Lixiang Xu; Zhanlong Wang; Suojuan Zhang; Xin Yuan; Minjuan Wang; Enhong Chen – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing (KT) is an intelligent educational technology used to model students' learning progress and mastery in adaptive learning environments for personalized education. Despite utilizing deep learning models in KT, current approaches often oversimplify students' exercise records into knowledge sequences, which fail to explore the rich…
Descriptors: Knowledge Level, Educational Technology, Intelligent Tutoring Systems, Individualized Instruction
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Liang Zhang; Jionghao Lin; John Sabatini; Conrad Borchers; Daniel Weitekamp; Meng Cao; John Hollander; Xiangen Hu; Arthur C. Graesser – IEEE Transactions on Learning Technologies, 2025
Learning performance data, such as correct or incorrect answers and problem-solving attempts in intelligent tutoring systems (ITSs), facilitate the assessment of knowledge mastery and the delivery of effective instructions. However, these data tend to be highly sparse (80%90% missing observations) in most real-world applications. This data…
Descriptors: Artificial Intelligence, Academic Achievement, Data, Evaluation Methods
Emiko Tsutsumi; Yiming Guo; Ryo Kinoshita; Maomi Ueno – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing (KT), the task of tracking the knowledge state of a student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines item response theory (IRT) with a deep learning method, provides superior performance. It can express the abilities of each student…
Descriptors: Item Response Theory, Academic Ability, Intelligent Tutoring Systems, Artificial Intelligence
Wang, Fei; Huang, Zhenya; Liu, Qi; Chen, Enhong; Yin, Yu; Ma, Jianhui; Wang, Shijin – IEEE Transactions on Learning Technologies, 2023
To provide personalized support on educational platforms, it is crucial to model the evolution of students' knowledge states. Knowledge tracing is one of the most popular technologies for this purpose, and deep learning-based methods have achieved state-of-the-art performance. Compared to classical models, such as Bayesian knowledge tracing, which…
Descriptors: Cognitive Measurement, Diagnostic Tests, Models, Prediction
Kozlov, Michail D.; Buder, Jurgen; Thiemann, Daniel – IEEE Transactions on Learning Technologies, 2018
The present study aims to empiricaly demonstrate the viability and benefits of an awareness-based approach to diversify knowledge between potential learning partners. Groups of four learners studied lesson material on biology. After a knowledge test, the groups were to form collaborative learning dyads. Based on the test, a novel knowledge…
Descriptors: College Students, Perception, Knowledge Level, Biology