NotesFAQContact Us
Collection
Advanced
Search Tips
Source
IEEE Transactions on Learning…34
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 34 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zhenchang Xia; Nan Dong; Jia Wu; Chuanguo Ma – IEEE Transactions on Learning Technologies, 2024
As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide…
Descriptors: Graphs, Artificial Intelligence, Multivariate Analysis, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Sha, Lele; Rakovic, Mladen; Das, Angel; Gasevic, Dragan; Chen, Guanliang – IEEE Transactions on Learning Technologies, 2022
Predictive modeling is a core technique used in tackling various tasks in learning analytics research, e.g., classifying educational forum posts, predicting learning performance, and identifying at-risk students. When applying a predictive model, it is often treated as the first priority to improve its prediction accuracy as much as possible.…
Descriptors: Prediction, Models, Accuracy, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Andrea Zanellati; Daniele Di Mitri; Maurizio Gabbrielli; Olivia Levrini – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing is a well-known problem in AI for education, consisting of monitoring how the knowledge state of students changes during the learning process and accurately predicting their performance in future exercises. In recent years, many advances have been made thanks to various machine learning and deep learning techniques. Despite their…
Descriptors: Artificial Intelligence, Prior Learning, Knowledge Management, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Rico-Juan, Juan Ramon; Sanchez-Cartagena, Victor M.; Valero-Mas, Jose J.; Gallego, Antonio Javier – IEEE Transactions on Learning Technologies, 2023
Online Judge (OJ) systems are typically considered within programming-related courses as they yield fast and objective assessments of the code developed by the students. Such an evaluation generally provides a single decision based on a rubric, most commonly whether the submission successfully accomplished the assignment. Nevertheless, since in an…
Descriptors: Artificial Intelligence, Models, Student Behavior, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Tao; Hu, Shengze; Yang, Huali; Geng, Jing; Liu, Sannyuya; Zhang, Hao; Yang, Zongkai – IEEE Transactions on Learning Technologies, 2023
The global outbreak of the new coronavirus epidemic has promoted the development of intelligent education and the utilization of online learning systems. In order to provide students with intelligent services, such as cognitive diagnosis and personalized exercises recommendation, a fundamental task is the concept tagging for exercises, which…
Descriptors: Educational Technology, Prediction, Electronic Learning, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Yu; Chen, Penghe; Pian, Yang; Zheng, Vincent W. – IEEE Transactions on Learning Technologies, 2022
In this article, we advocate for and propose a novel concept map driven knowledge tracing (CMKT) model, which utilizes educational concept map for learner modeling. This article particularly addresses the issue of learner data sparseness caused by the unwillingness to practice and irregular learning behaviors on the learner side. CMKT considers…
Descriptors: Concept Mapping, Learning Processes, Prediction, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Uto, Masaki; Aomi, Itsuki; Tsutsumi, Emiko; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2023
In automated essay scoring (AES), essays are automatically graded without human raters. Many AES models based on various manually designed features or various architectures of deep neural networks (DNNs) have been proposed over the past few decades. Each AES model has unique advantages and characteristics. Therefore, rather than using a single-AES…
Descriptors: Prediction, Scores, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Deeva, Galina; De Smedt, Johannes; De Weerdt, Jochen – IEEE Transactions on Learning Technologies, 2022
Due to the unprecedented growth in available data collected by e-learning platforms, including platforms used by massive open online course (MOOC) providers, important opportunities arise to structurally use these data for decision making and improvement of the educational offering. Student retention is a strategic task that can be supported by…
Descriptors: Electronic Learning, MOOCs, Dropouts, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Yuang Wei; Bo Jiang – IEEE Transactions on Learning Technologies, 2024
Understanding student cognitive states is essential for assessing human learning. The deep neural networks (DNN)-inspired cognitive state prediction method improved prediction performance significantly; however, the lack of explainability with DNNs and the unitary scoring approach fail to reveal the factors influencing human learning. Identifying…
Descriptors: Cognitive Mapping, Models, Prediction, Short Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Moresi, Marco; Gomez, Marcos J.; Benotti, Luciana – IEEE Transactions on Learning Technologies, 2021
Based on hundreds of thousands of hours of data about how students learn in massive open online courses, educational machine learning promises to help students who are learning to code. However, in most classrooms, students and assignments do not have enough historical data for feeding these data hungry algorithms. Previous work on predicting…
Descriptors: Prediction, Difficulty Level, Programming, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Mao, Shun; Zhan, Jieyu; Wang, Yizhao; Jiang, Yuncheng – IEEE Transactions on Learning Technologies, 2023
For offering adaptive learning to learners in intelligent tutoring systems, one of the fundamental tasks is knowledge tracing (KT), which aims to assess learners' learning states and make prediction for future performance. However, there are two crucial issues in deep learning-based KT models. First, the knowledge concepts are used to predict…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Prediction, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Kovalkov, Anastasia; Paaßen, Benjamin; Segal, Avi; Pinkwart, Niels; Gal, Kobi – IEEE Transactions on Learning Technologies, 2021
Promoting creativity is considered an important goal of education, but creativity is notoriously hard to measure. In this article, we make the journey from defining a formal measure of creativity, that is, efficiently computable to applying the measure in a practical domain. The measure is general and relies on core theoretical concepts in…
Descriptors: Creativity, Programming, Measurement Techniques, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Deho, Oscar Blessed; Joksimovic, Srecko; Li, Jiuyong; Zhan, Chen; Liu, Jixue; Liu, Lin – IEEE Transactions on Learning Technologies, 2023
Many educational institutions are using predictive models to leverage actionable insights using student data and drive student success. A common task has been predicting students at risk of dropping out for the necessary interventions to be made. However, issues of discrimination by these predictive models based on protected attributes of students…
Descriptors: Learning Analytics, Models, Student Records, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Baneres, David; Rodriguez-Gonzalez, M. Elena; Guerrero-Roldan, Ana Elena – IEEE Transactions on Learning Technologies, 2023
Course dropout is a concern in online higher education, mainly in first-year courses when different factors negatively influence the learners' engagement leading to an unsuccessful outcome or even dropping out from the university. The early identification of such potential at-risk learners is the key to intervening and trying to help them before…
Descriptors: Prediction, Models, Identification, Potential Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Jionghao Lin; Wei Tan; Lan Du; Wray Buntine; David Lang; Dragan Gasevic; Guanliang Chen – IEEE Transactions on Learning Technologies, 2024
Automating the classification of instructional strategies from a large-scale online tutorial dialogue corpus is indispensable to the design of dialogue-based intelligent tutoring systems. Despite many existing studies employing supervised machine learning (ML) models to automate the classification process, they concluded that building a…
Descriptors: Classification, Dialogs (Language), Teaching Methods, Computer Assisted Instruction
Previous Page | Next Page »
Pages: 1  |  2  |  3