Publication Date
In 2025 | 2 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 17 |
Since 2016 (last 10 years) | 25 |
Since 2006 (last 20 years) | 31 |
Descriptor
Source
Informatics in Education | 31 |
Author
Publication Type
Journal Articles | 31 |
Reports - Research | 23 |
Information Analyses | 4 |
Reports - Evaluative | 4 |
Reports - Descriptive | 2 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 14 |
Postsecondary Education | 14 |
Secondary Education | 9 |
Elementary Education | 4 |
Junior High Schools | 2 |
Middle Schools | 2 |
Elementary Secondary Education | 1 |
Audience
Location
Greece | 3 |
Turkey | 3 |
Lithuania | 2 |
Asia | 1 |
Brazil | 1 |
Czech Republic | 1 |
Hungary | 1 |
Maryland (Baltimore) | 1 |
Middle East | 1 |
Netherlands | 1 |
Oman | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Irem Nur Çelik; Kati Bati – Informatics in Education, 2025
In this study, we aimed to investigate the impact of cooperative learning on the computational thinking skills and academic performances of middle school students in the computational problem-solving approach. We used the pretest-posttest control group design of the quasiexperimental method. In the research, computational problem-solving…
Descriptors: Cooperative Learning, Academic Achievement, Computation, Thinking Skills
Ragonis, Noa; Shmallo, Ronit – Informatics in Education, 2022
Object-oriented programming distinguishes between instance attributes and methods and class attributes and methods, annotated by the "static" modifier. Novices encounter difficulty understanding the means and implications of "static" attributes and methods. The paper has two outcomes: (a) a detailed classification of aspects of…
Descriptors: Programming, Computer Science Education, Concept Formation, Thinking Skills
Bati, Kaan – Informatics in Education, 2022
This study reports the findings of a program that aims to develop pre-service science teachers' computational problem-solving skills and views on using information and communications technology in science education. To this end, pre-service science teachers were trained on computational thinking, computational problem solving, designing an…
Descriptors: Foreign Countries, Programming, Programming Languages, Technology Integration
Heidi Taveter; Marina Lepp – Informatics in Education, 2025
Learning programming has become increasingly popular, with learners from diverse backgrounds and experiences requiring different support. Programming-process analysis helps to identify solver types and needs for assistance. The study examined students' behavior patterns in programming among beginners and non-beginners to identify solver types,…
Descriptors: Behavior Patterns, Novices, Expertise, Programming
Strömbäck, Filip; Mannila, Linda; Kamkar, Mariam – Informatics in Education, 2021
Concurrency is often perceived as difficult by students. One reason for this may be due to the fact that abstractions used in concurrent programs leave more situations undefined compared to sequential programs (e.g., in what order statements are executed), which makes it harder to create a proper mental model of the execution environment. Students…
Descriptors: College Students, Programming, Programming Languages, Concept Formation
Valentina Dagiene; Gintautas Grigas; Tatjana Jevsikova – Informatics in Education, 2024
The work of Niklaus Wirth, designer of the Pascal programming language, has led to the introduction of programming in schools in many countries often leading to a transformation in the way of thinking. In this article, we provide a retrospective analysis of the Lithuanian experience driven by Pascal and discuss the main ideas about teaching…
Descriptors: Programming Languages, Computer Science Education, Foreign Countries, Programming
Jirí Vanícek; Václav Dobiáš; Václav Šimandl – Informatics in Education, 2023
The article describes a study carried out on pupils aged 12-13 with no prior programming experience. The study examined how they learn to use loops with a fixed number of repetitions. Pupils were given a set of programming tasks to solve, without any preparatory or accompanying instruction or explanation, in a block-based visual programming…
Descriptors: Secondary School Students, Misconceptions, Programming, Concept Formation
Haglund, Pontus; Strömbäck, Filip; Mannila, Linda – Informatics in Education, 2021
Controlling complexity through the use of abstractions is a critical part of problem solving in programming. Thus, becoming proficient with procedural and data abstraction through the use of user-defined functions is important. Properly using functions for abstraction involves a number of other core concepts, such as parameter passing, scope and…
Descriptors: Computer Science Education, Programming, Programming Languages, Problem Solving
Sbaraglia, Marco; Lodi, Michael; Martini, Simone – Informatics in Education, 2021
Introductory programming courses (CS1) are difficult for novices. Inspired by "Problem solving followed by instruction" and "Productive Failure" approaches, we define an original "necessity-driven" learning design. Students are put in an apparently well-known situation, but this time they miss an essential ingredient…
Descriptors: Programming, Introductory Courses, Computer Science Education, Programming Languages
Dagyeom Lee; Youngjun Lee – Informatics in Education, 2024
As our society has advanced in the era of digital transformation, education has been transformed from knowledge-centered to competency-centered to solve future problems in the light of unpredictable changes and events in our lives. Programming education provides the basic knowledge needed, and fosters higher-order thinking skills in the process of…
Descriptors: Problem Solving, Computer Science Education, Programming, Thinking Skills
Csizmadia, Andrew; Standl, Bernhard; Waite, Jane – Informatics in Education, 2019
In computer science education at school, computational thinking has been an emerging topic over the last decade. Even though, computational thinking is interpreted and integrated in classrooms in different ways, an identification process about what computational thinking is about has been in progress among computer science school-teachers and…
Descriptors: Constructivism (Learning), Computation, Thinking Skills, Class Activities
Barbosa Rocha, Hemilis Joyse; Cabral De Azevedo Restelli Tedesco, Patrícia; De Barros Costa, Evandro – Informatics in Education, 2023
In programming problem solving activities, sometimes, students need feedback to progress in the course, being positively affected by the received feedback. This paper presents an overview of the state of the art and practice of the feedback approaches on introductory programming. To this end, we have carried out a systematic literature mapping to…
Descriptors: Classification, Computer Science Education, Feedback (Response), Problem Solving
Vincenti, Giovanni – Informatics in Education, 2022
Preparing students for the workforce is a balancing act that involves theory, practice, and assessment. As students navigate an educational experience that is, however, often distant from real-world needs, it is imperative that academia finds a novel way to bridge the gap. As many organizations utilize open challenges to attract ideas and talent,…
Descriptors: Undergraduate Students, Active Learning, Student Projects, Problem Solving
Judith Galezer; Smadar Szekely – Informatics in Education, 2024
Spark, one of the products offered by MyQ (formerly Plethora), is a game-based platform meticulously designed to introduce students to the foundational concepts of computer science. By navigating through logical challenges, users delve into topics like abstraction, loops, and graph patterns. Setting itself apart from its counterparts, Spark boasts…
Descriptors: Learning Management Systems, Game Based Learning, Computer Science Education, Teaching Methods
Denning, Peter J.; Tedre, Matti – Informatics in Education, 2021
Over its short disciplinary history, computing has seen a stunning number of descriptions of the field's characteristic ways of thinking and practicing, under a large number of different labels. One of the more recent variants, notably in the context of K-12 education, is "computational thinking", which became popular in the early 2000s,…
Descriptors: Thinking Skills, Computation, Computer Science, Mathematics