NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hassan Kilavo; Tabu S. Kondo; Feruzi Hassan – Interactive Learning Environments, 2024
Today computing is intricate in all aspects of our lives, beginning with communications and education to banking, information security, health, shopping, and social media. Development of the computing is proportional to the development of software which is becoming a serious part of all daily lives. This paper, therefore, assessed the impact of…
Descriptors: Foreign Countries, Computer Science Education, Elementary School Students, Outcomes of Education
Peer reviewed Peer reviewed
Direct linkDirect link
Tyler S. Love – Interactive Learning Environments, 2024
Providing greater access to computer science (CS) education for K-12 students in the United States (U.S.) has increased interest in integrating CS concepts within authentic science, technology, engineering, and mathematics (STEM) contexts. Physical computing is one method that has demonstrated promising results in other countries (e.g. England)…
Descriptors: Middle School Students, Student Attitudes, Computer Science Education, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan-Chen Liu; Tzu-Hua Huang; Chia-Ling Sung – Interactive Learning Environments, 2023
Computational thinking is an important skill in computer science since the 1960s, and it is closely related to problem solving. Almost all research related to computational thinking mentions problem solving. Although some research has been conducted on computational thinking, few studies examined the impact of personal traits on students'…
Descriptors: Personality Traits, Computation, Thinking Skills, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan-Chen Liu; Tzu-Hua Huang; Chien-Chia Huang – Interactive Learning Environments, 2024
In this study, an interactive programming learning environment was built with two types of error prompt functions: 1) the key prompt and 2) step-by-step prompt. A quasi-experimental study was conducted for five weeks, in which 75 sixth grade students from disadvantaged learning environments in Taipei, Taiwan, were divided into three groups: 1) the…
Descriptors: Programming, Computer Science Education, Cues, Grade 6
Peer reviewed Peer reviewed
Direct linkDirect link
Gang Yang; Dan Zheng; Ji-Huan Chen; Qun-Fang Zeng; Yun-Fang Tu; Xiao-Li Zheng – Interactive Learning Environments, 2024
The game-based learning approach to developing students' computational thinking (CT) current has received attention from researchers. However, the compatibility between games and instruction is often insufficient to accommodate the entertaining and educational nature of the curriculum entirely, and the benefits of game-based learning could be…
Descriptors: Role Playing, Educational Games, Mental Computation, Learner Engagement
Peer reviewed Peer reviewed
Direct linkDirect link
Qian Fu; Wenjing Tang; Yafeng Zheng; Haotian Ma; Tianlong Zhong – Interactive Learning Environments, 2024
In this study, a predictive model is constructed to analyze learners' performance in programming tasks using data of programming behavioral events and behavioral sequences. First, this study identifies behavioral events from log data and applies lag sequence analysis to extract behavioral sequences that reflect learners' programming strategies.…
Descriptors: Predictor Variables, Psychological Patterns, Programming, Self Management
Peer reviewed Peer reviewed
Direct linkDirect link
Shian-Shyong Tseng; Tsung-Yu Yang; Wen-Chung Shih; Bo-Yang Shan – Interactive Learning Environments, 2024
In this paper, to handle the problem of the quick evolution of cyber-security attacks, we developed the iMonsters board game and proposed the attack and defense knowledge self-evolving algorithm. Three versions of the iMonsters were launched in 2013, 2017, and 2019, respectively. Accordingly, the cyber-security ontology can be refined by the…
Descriptors: Educational Games, Computer Security, Computer Science Education, Game Based Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Murai, Yumiko; Ikejiri, Ryohei; Yamauchi, Yuhei; Tanaka, Ai; Nakano, Seiko – Interactive Learning Environments, 2023
Cultivating children's creativity and imagination is fundamental to preparing them for an increasingly complex and uncertain future. Engaging in creative learning enables children to think independently and critically, work cooperatively, and take risks while actively engaged in meaningful projects. While current trends in education, such as maker…
Descriptors: Creativity, Imagination, Teaching Methods, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Xing, Wanli – Interactive Learning Environments, 2021
Previous research has invested much effort in understanding how programming can contribute to the development of young learners' computational thinking (CT) in traditional K-12 classroom settings. Relatively few studies have examined programming for CT in informal online communities, especially for large scale quantitative research. With the…
Descriptors: Programming, Thinking Skills, Computation, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Rich, Kathryn M.; Spaepen, Elizabet; Strickland, Carla; Moran, Cheryl – Interactive Learning Environments, 2020
A key debate in computer science education is whether and how computational thinking (CT) is used within disciplines other than computer science. Broad definitions provide many avenues for developing integrated instruction, as practices within existing activities can simply be reframed in terms of CT. But such general use of the term CT may…
Descriptors: Computer Science Education, Mathematics Education, Mathematics Skills, Elementary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Wong, Gary Ka-Wai; Cheung, Ho-Yin – Interactive Learning Environments, 2020
The role of programming in computing education for children has grown rapidly in recent years with the proliferation of specially designed programming tools, which is grounded on Seymour Papert's theoretical work in Constructionism. Studies show that some children can develop computational thinking skills and practices with programming activities…
Descriptors: Elementary School Students, Student Attitudes, 21st Century Skills, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Rodríguez-Martínez, José Antonio; González-Calero, José Antonio; Sáez-López, José Manuel – Interactive Learning Environments, 2020
The potential benefits from the introduction of programming environments such as "Scratch" for learning mathematics has reactivated research in this area. Nonetheless, there are few studies which attempt to analyse their influence at the stage of Primary Education. We present the results of a quasi-experimental piece of research with…
Descriptors: Programming Languages, Grade 6, Elementary School Students, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Israel, Maya; Lash, Todd – Interactive Learning Environments, 2020
This paper presents findings from a two-year qualitative study examining integration of computer science (CS) and computational thinking (CT) into elementary mathematics instruction. Integrated units were developed by elementary teachers and CS/CT coaches with support from university faculty with expertise in CS/CT and elementary mathematics.…
Descriptors: Thinking Skills, Problem Solving, Computation, Mathematics Instruction