Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 15 |
| Since 2017 (last 10 years) | 30 |
| Since 2007 (last 20 years) | 35 |
Descriptor
Source
| International Educational… | 35 |
Author
| Barnes, Tiffany | 8 |
| Price, Thomas W. | 4 |
| Chi, Min | 3 |
| Zhi, Rui | 3 |
| Barnes, Tiffany, Ed. | 2 |
| Dong, Yihuan | 2 |
| Feng, Mingyu, Ed. | 2 |
| Heckman, Sarah | 2 |
| Lynch, Collin | 2 |
| Price, Thomas | 2 |
| Shi, Yang | 2 |
| More ▼ | |
Publication Type
| Speeches/Meeting Papers | 27 |
| Reports - Research | 26 |
| Collected Works - Proceedings | 8 |
| Books | 1 |
| Reports - Descriptive | 1 |
Education Level
Audience
Location
| Brazil | 3 |
| China | 2 |
| Uruguay | 2 |
| Virginia | 2 |
| Afghanistan | 1 |
| Arizona | 1 |
| Australia | 1 |
| Europe | 1 |
| Finland | 1 |
| France | 1 |
| Germany | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
What Works Clearinghouse Rating
Mehmet Arif Demirta¸; Max Fowler; Kathryn Cunningham – International Educational Data Mining Society, 2024
Analyzing which skills students develop in introductory programming education is an important question for the computer science education community. These key skills and concepts have been formalized as knowledge components, which are units of knowledge that can be measured by performance on a set of tasks. While knowledge components in other…
Descriptors: Programming, Computer Science Education, Skill Development, Knowledge Level
Muntasir Hoq; Ananya Rao; Reisha Jaishankar; Krish Piryani; Nithya Janapati; Jessica Vandenberg; Bradford Mott; Narges Norouzi; James Lester; Bita Akram – International Educational Data Mining Society, 2025
In Computer Science (CS) education, understanding factors contributing to students' programming difficulties is crucial for effective learning support. By identifying specific issues students face, educators can provide targeted assistance to help them overcome obstacles and improve learning outcomes. While identifying sources of struggle, such as…
Descriptors: Computer Science Education, Programming, Misconceptions, Error Patterns
Jesper Dannath; Alina Deriyeva; Benjamin Paaßen – International Educational Data Mining Society, 2025
Research on the effectiveness of Intelligent Tutoring Systems (ITSs) suggests that automatic hint generation has the best effect on learning outcomes when hints are provided on the level of intermediate steps. However, ITSs for programming tasks face the challenge to decide on the granularity of steps for feedback, since it is not a priori clear…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Undergraduate Students
Yang Shi; Tiffany Barnes; Min Chi; Thomas Price – International Educational Data Mining Society, 2024
Knowledge tracing (KT) models have been a commonly used tool for tracking students' knowledge status. Recent advances in deep knowledge tracing (DKT) have demonstrated increased performance for knowledge tracing tasks in many datasets. However, interpreting students' states on single knowledge components (KCs) from DKT models could be challenging…
Descriptors: Algorithms, Artificial Intelligence, Models, Programming
Yunsung Kim; Jadon Geathers; Chris Piech – International Educational Data Mining Society, 2024
"Stochastic programs," which are programs that produce probabilistic output, are a pivotal paradigm in various areas of CS education from introductory programming to machine learning and data science. Despite their importance, the problem of automatically grading such programs remains surprisingly unexplored. In this paper, we formalize…
Descriptors: Grading, Automation, Accuracy, Programming
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2022
In computer science education timely help seeking during large programming projects is essential for student success. Help-seeking in typical courses happens in office hours and through online forums. In this research, we analyze students coding activities and help requests to understand the interaction between these activities. We collected…
Descriptors: Computer Science Education, College Students, Programming, Coding
Victor-Alexandru Padurean; Tung Phung; Nachiket Kotalwar; Michael Liut; Juho Leinonen; Paul Denny; Adish Singla – International Educational Data Mining Society, 2025
The growing need for automated and personalized feedback in programming education has led to recent interest in leveraging generative AI for feedback generation. However, current approaches tend to rely on prompt engineering techniques in which predefined prompts guide the AI to generate feedback. This can result in rigid and constrained responses…
Descriptors: Automation, Student Writing Models, Feedback (Response), Programming
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education
Kumar, Amruth N. – International Educational Data Mining Society, 2023
Is there a pattern in how students solve Parsons puzzles? Is there a difference between the puzzle-solving strategies of C++ and Java students? We used Markov transition matrix to answer these questions. We analyzed the solutions of introductory programming students solving Parsons puzzles involving if-else statements and while loops in C++ and…
Descriptors: Markov Processes, Puzzles, Introductory Courses, Computer Science Education
Miao, Dezhuang; Dong, Yu; Lu, Xuesong – International Educational Data Mining Society, 2020
In colleges, programming is increasingly becoming a general education course of almost all STEM majors as well as some art majors, resulting in an emerging demand for scalable programming education. To support scalable education, teaching activities such as grading and feedback have to be automated. Recently, online judge systems have been…
Descriptors: Programming, Prediction, Error Patterns, Models
Gitinabard, Niki; Okoilu, Ruth; Xu, Yiqao; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin – International Educational Data Mining Society, 2020
Teamwork, often mediated by version control systems such as Git and Apache Subversion (SVN), is central to professional programming. As a consequence, many colleges are incorporating both collaboration and online development environments into their curricula even in introductory courses. In this research, we collected GitHub logs from two…
Descriptors: Teamwork, Group Activities, Student Projects, Programming
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns

Peer reviewed
