NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khan, Md Akib Zabed; Polyzou, Agoritsa – International Educational Data Mining Society, 2023
Academic advising plays an important role in students' decision-making in higher education. Data-driven methods provide useful recommendations to students to help them with degree completion. Several course recommendation models have been proposed in the literature to recommend courses for the next semester. One aspect of the data that has yet to…
Descriptors: Course Selection (Students), Learning Analytics, Academic Advising, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sha, Lele; Rakovic, Mladen; Li, Yuheng; Whitelock-Wainwright, Alexander; Carroll, David; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2021
Classifying educational forum posts is a longstanding task in the research of Learning Analytics and Educational Data Mining. Though this task has been tackled by applying both traditional Machine Learning (ML) approaches (e.g., Logistics Regression and Random Forest) and up-to-date Deep Learning (DL) approaches, there lacks a systematic…
Descriptors: Classification, Computer Mediated Communication, Learning Analytics, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ong, Nathan; Zhu, Jiaye; Mossé, Daniel – International Educational Data Mining Society, 2022
Student grade prediction is a popular task for learning analytics, given grades are the traditional form of student performance. However, no matter the learning environment, student background, or domain content, there are things in common across most experiences in learning. In most previous machine learning models, previous grades are considered…
Descriptors: Prediction, Grades (Scholastic), Learning Analytics, Student Characteristics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marras, Mirko; Vignoud, Julien Tuân Tu; Käser, Tanja – International Educational Data Mining Society, 2021
Early predictors of student success are becoming a key tool in flipped and online courses to ensure that no student is left behind along course activities. However, with an increased interest in this area, it has become hard to keep track of what the state of the art in early success prediction is. Moreover, prior work on early success prediction…
Descriptors: Benchmarking, Predictor Variables, Academic Achievement, Flipped Classroom
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Azhar, Aqil Zainal; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2022
This paper studies the use of Reinforcement Learning (RL) policies for optimizing the sequencing of online learning materials to students. Our approach provides an end to end pipeline for automatically deriving and evaluating robust representations of students' interactions and policies for content sequencing in online educational settings. We…
Descriptors: Reinforcement, Instructional Materials, Learning Analytics, Policy Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Li, Jiawei; Supraja, S.; Qiu, Wei; Khong, Andy W. H. – International Educational Data Mining Society, 2022
Academic grades in assessments are predicted to determine if a student is at risk of failing a course. Sequential models or graph neural networks that have been employed for grade prediction do not consider relationships between course descriptions. We propose the use of text mining to extract semantic, syntactic, and frequency-based features from…
Descriptors: Course Descriptions, Learning Analytics, Academic Achievement, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kim, Byungsoo; Yu, Hangyeol; Shin, Dongmin; Choi, Youngduck – International Educational Data Mining Society, 2021
The needs for precisely estimating a student's academic performance have been emphasized with an increasing amount of attention paid to Intelligent Tutoring System (ITS). However, since labels for academic performance, such as test scores, are collected from outside of ITS, obtaining the labels is costly, leading to label-scarcity problem which…
Descriptors: Academic Achievement, Intelligent Tutoring Systems, Prediction, Scores