Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 12 |
Descriptor
Classification | 12 |
Computer Science Education | 12 |
Programming | 10 |
Coding | 4 |
College Students | 4 |
Programming Languages | 4 |
Teaching Methods | 4 |
Automation | 3 |
Data Analysis | 3 |
Foreign Countries | 3 |
Intelligent Tutoring Systems | 3 |
More ▼ |
Source
International Educational… | 12 |
Author
Barnes, Tiffany | 5 |
Chi, Min | 3 |
Heckman, Sarah | 2 |
Lynch, Collin | 2 |
Mao, Ye | 2 |
Price, Thomas W. | 2 |
Shi, Yang | 2 |
Beck, Florian | 1 |
Bihani, Ankita | 1 |
Broisin, Julien | 1 |
Carvalho, Leandro S. G. | 1 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 12 |
Reports - Research | 11 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 6 |
Audience
Location
Brazil | 1 |
France | 1 |
Switzerland | 1 |
Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Fein, Benedikt; Graßl, Isabella; Beck, Florian; Fraser, Gordon – International Educational Data Mining Society, 2022
The recent trend of embedding source code for machine learning applications also enables new opportunities in learning analytics in programming education, but which code embedding approach is most suitable for learning analytics remains an open question. A common approach to embedding source code lies in extracting syntactic information from a…
Descriptors: Artificial Intelligence, Learning Analytics, Programming, Programming Languages
Gao, Zhikai; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2021
As Computer Science has increased in popularity so too have class sizes and demands on faculty to provide support. It is therefore more important than ever for us to identify new ways to triage student questions, identify common problems, target students who need the most help, and better manage instructors' time. By analyzing interaction data…
Descriptors: Automation, Classification, Help Seeking, Computer Science Education
Höppner, Frank – International Educational Data Mining Society, 2021
Various similarity measures for source code have been proposed, many rely on edit- or tree-distance. To support a lecturer in quickly assessing live or online exercises with respect to "approaches taken by the students," we compare source code on a more abstract, semantic level. Even if novice student's solutions follow the same idea,…
Descriptors: Coding, Classification, Programming, Computer Science Education
Gitinabard, Niki; Okoilu, Ruth; Xu, Yiqao; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin – International Educational Data Mining Society, 2020
Teamwork, often mediated by version control systems such as Git and Apache Subversion (SVN), is central to professional programming. As a consequence, many colleges are incorporating both collaboration and online development environments into their curricula even in introductory courses. In this research, we collected GitHub logs from two…
Descriptors: Teamwork, Group Activities, Student Projects, Programming
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Fonseca, Samuel C.; Pereira, Filipe Dwan; Oliveira, Elaine H. T.; Oliveira, David B. F.; Carvalho, Leandro S. G.; Cristea, Alexandra I. – International Educational Data Mining Society, 2020
As programming must be learned by doing, introductory programming course learners need to solve many problems, e.g., on systems such as 'Online Judges'. However, as such courses are often compulsory for non-Computer Science (nonCS) undergraduates, this may cause difficulties to learners that do not have the typical intrinsic motivation for…
Descriptors: Programming, Introductory Courses, Computer Science Education, Automation
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Paaßen, Benjamin; Jensen, Joris; Hammer, Barbara – International Educational Data Mining Society, 2016
The first intelligent tutoring systems for computer programming have been proposed more than 30 years ago, mostly focusing on well defined programming tasks e.g. in the context of logic programming. Recent systems also teach complex programs, where explicit modelling of every possible program and mistake is no longer possible. Such systems are…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Data
Broisin, Julien; Hérouard, Clément – International Educational Data Mining Society, 2019
How to support students in programming learning has been a great research challenge in the last years. To address this challenge, prior works have mainly focused on proposing solutions based on syntactic analysis to provide students with personalized feedback about their grammatical programming errors and misconceptions. However, syntactic…
Descriptors: Semantics, Programming, Syntax, Feedback (Response)
Bihani, Ankita; Paepcke, Andreas – International Educational Data Mining Society, 2018
We develop a random forest classifier that helps assign academic credit for a student's class forum participation. The classification target are the four classes created by student rank quartiles. Course content experts provided ground truth by ranking a limited number of post pairs. We expand this labeled set via data augmentation. We compute the…
Descriptors: College Credits, Classification, Computer Mediated Communication, Student Participation
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Sharma, Kshitij; Jermann, Patrick; Dillenbourg, Pierre – International Educational Data Mining Society, 2015
Current schemes to categorise MOOC students result from a single view on the population which either contains the engagement of the students or demographics or self reported motivation. We propose a new hierarchical student categorisation, which uses common online activities capturing both engagement and achievement of MOOC students. A first level…
Descriptors: Foreign Countries, Online Courses, Large Group Instruction, Student Characteristics