NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…26
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabrina, Preya; Mostafavi, Behrooz; Tithi, Sutapa Dey; Chi, Min; Barnes, Tiffany – International Educational Data Mining Society, 2023
Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Graphs, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Langenhagen, Julian – International Educational Data Mining Society, 2022
Although badges are among the most-used game elements in gamified education, studies about their optimal features to motivate learning are scarce. How should a badge be designed to represent an incentive for a specific goal like optimal exam preparation? This study examines usage data of a higher education learning app to determine whether the…
Descriptors: Data Analysis, Goal Orientation, Computer Software, Game Based Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mbouzao, Boniface; Desmarais, Michel C.; Shrier, Ian – International Educational Data Mining Society, 2020
Massive online Open Courses (MOOCs) make extensive use of videos. Students interact with them by pausing, seeking forward or backward, replaying segments, etc. We can reasonably assume that students have different patterns of video interactions, but it remains hard to compare student video interactions. Some methods were developed, such as Markov…
Descriptors: Comparative Analysis, Video Technology, Interaction, Measurement Techniques
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sha, Lele; Rakovic, Mladen; Li, Yuheng; Whitelock-Wainwright, Alexander; Carroll, David; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2021
Classifying educational forum posts is a longstanding task in the research of Learning Analytics and Educational Data Mining. Though this task has been tackled by applying both traditional Machine Learning (ML) approaches (e.g., Logistics Regression and Random Forest) and up-to-date Deep Learning (DL) approaches, there lacks a systematic…
Descriptors: Classification, Computer Mediated Communication, Learning Analytics, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sanguino, Juan; Manrique, Rubén; Mariño, Olga; Linares-Vásquez, Mario; Cardozo, Nicolas – International Educational Data Mining Society, 2022
Recommender systems in educational contexts have proven effective to identify learning resources that fit the interests and needs of learners. Their usage has been of special interest in online self-learning scenarios to increase student retention and improve the learning experience. In current recommendation techniques, and in particular, in…
Descriptors: Data Analysis, Learning Analytics, Student Interests, Student Needs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Danciulescu, Theodora Ioana; Mihaescu, Marian Cristian; Heras, Stella; Palanca, Javier; Julian, Vicente – International Educational Data Mining Society, 2020
Building and especially improving a classification kernel represents a challenging task. The works presented in this paper continue an already developed semi-supervised classification approach that aimed at labelling transcripts from educational videos. We questioned whether the size of the ground-truth data-set (Wikipedia articles) or the quality…
Descriptors: Data Analysis, Classification, Information Retrieval, Video Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bulathwela, Sahan; Pérez-Ortiz, María; Lipani, Aldo; Yilmaz, Emine; Shawe-Taylor, John – International Educational Data Mining Society, 2020
The explosion of Open Educational Resources (OERs) in the recent years creates the demand for scalable, automatic approaches to process and evaluate OERs, with the end goal of identifying and recommending the most suitable educational materials for learners. We focus on building models to find the characteristics and features involved in…
Descriptors: Prediction, Open Educational Resources, Learner Engagement, Video Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fouh, Eric; Farghally, Mohammed; Hamouda, Sally; Koh, Kyu Han; Shaffer, Clifford A. – International Educational Data Mining Society, 2016
We present an analysis of log data from a semester's use of the OpenDSA eTextbook system with the goal of determining the most difficult course topics in a data structures course. While experienced instructors can identify which topics students most struggle with, this often comes only after much time and effort, and does not provide real-time…
Descriptors: Item Response Theory, Data Analysis, Mathematics, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rihák, Jirí; Pelánek, Radek – International Educational Data Mining Society, 2017
Educational systems typically contain a large pool of items (questions, problems). Using data mining techniques we can group these items into knowledge components, detect duplicated items and outliers, and identify missing items. To these ends, it is useful to analyze item similarities, which can be used as input to clustering or visualization…
Descriptors: Item Analysis, Data Analysis, Visualization, Simulation
Mostow, Jack; Gates, Donna; Ellison, Ross; Goutam, Rahul – International Educational Data Mining Society, 2015
Vocabulary knowledge is crucial to literacy development and academic success. Previous research has shown learning the meaning of a word requires encountering it in diverse informative contexts. In this work, we try to identify "nutritious" contexts for a word--contexts that help students build a rich mental representation of the word's…
Descriptors: Nutrition, Vocabulary Development, Accuracy, Scoring
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Li, Yuntao; Fu, Chengzhen; Zhang, Yan – International Educational Data Mining Society, 2017
Since MOOC is suffering high dropout rate, researchers try to explore the reasons and mitigate it. Focusing on this task, we employ a composite model to infer behaviors of learners in the coming weeks based on his/her history log of learning activities, including interaction with video lectures, participation in discussion forum, and performance…
Descriptors: Online Courses, Mass Instruction, Student Behavior, Learning Activities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhou, Guojing; Wang, Jianxun; Lynch, Collin F.; Chi, Min – International Educational Data Mining Society, 2017
In this study, we applied decision trees (DT) to extract a compact set of pedagogical decision-making rules from an original "full" set of 3,702 Reinforcement Learning (RL)- induced rules, referred to as the DT-RL rules and Full-RL rules respectively. We then evaluated the effectiveness of the two rule sets against a baseline Random…
Descriptors: Learning Theories, Teaching Methods, Decision Making, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Price, Thomas; Zhi, Rui; Barnes, Tiffany – International Educational Data Mining Society, 2017
In this paper we present a novel, data-driven algorithm for generating feedback for students on open-ended programming problems. The feedback goes beyond next-step hints, annotating a student's whole program with suggested edits, including code that should be moved or reordered. We also build on existing work to design a methodology for evaluating…
Descriptors: Feedback (Response), Computer Software, Data Analysis, Programming
Beheshti, Behzad; Desmarais, Michel C. – International Educational Data Mining Society, 2015
This study investigates the issue of the goodness of fit of different skills assessment models using both synthetic and real data. Synthetic data is generated from the different skills assessment models. The results show wide differences of performances between the skills assessment models over synthetic data sets. The set of relative performances…
Descriptors: Goodness of Fit, Student Evaluation, Skills, Models
Previous Page | Next Page »
Pages: 1  |  2