Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 11 |
Descriptor
Source
International Educational… | 11 |
Author
Aleven, Vincent | 1 |
Barollet, Théo | 1 |
Bouchez Tichadou, Florent | 1 |
Cao, Yunbo | 1 |
Cardozo, Nicolas | 1 |
Carroll, David | 1 |
Chen, Guanliang | 1 |
Chu, Wei | 1 |
Cosyn, Eric | 1 |
Cui, Jialin | 1 |
Dywel, Malwina | 1 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 11 |
Reports - Research | 10 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Australia | 1 |
California (Stanford) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Measures of Academic Progress | 1 |
What Works Clearinghouse Rating
Jia, Qinjin; Young, Mitchell; Xiao, Yunkai; Cui, Jialin; Liu, Chengyuan; Rashid, Parvez; Gehringer, Edward – International Educational Data Mining Society, 2022
Providing timely feedback is crucial in promoting academic achievement and student success. However, for multifarious reasons (e.g., limited teaching resources), feedback often arrives too late for learners to act on the feedback and improve learning. Thus, automated feedback systems have emerged to tackle educational tasks in various domains,…
Descriptors: Student Projects, Feedback (Response), Natural Language Processing, Guidelines
Matayoshi, Jeffrey; Cosyn, Eric; Uzun, Hasan – International Educational Data Mining Society, 2022
As outlined by Benjamin Bloom, students working within a mastery learning framework must demonstrate mastery of the core prerequisite material before learning any subsequent material. Since many learning systems in use today adhere to these principles, an important component of such systems is the set of rules or algorithms that determine when a…
Descriptors: Guidelines, Mastery Learning, Learning Processes, Correlation
PaaBen, Benjamin; Dywel, Malwina; Fleckenstein, Melanie; Pinkwart, Niels – International Educational Data Mining Society, 2022
Item response theory (IRT) is a popular method to infer student abilities and item difficulties from observed test responses. However, IRT struggles with two challenges: How to map items to skills if multiple skills are present? And how to infer the ability of new students that have not been part of the training data? Inspired by recent advances…
Descriptors: Item Response Theory, Test Items, Item Analysis, Inferences
Zhou, Yuhao; Li, Xihua; Cao, Yunbo; Zhao, Xuemin; Ye, Qing; Lv, Jiancheng – International Educational Data Mining Society, 2021
In educational applications, "Knowledge Tracing" (KT) has been widely studied for decades as it is considered a fundamental task towards adaptive online learning. Among proposed KT methods, Deep Knowledge Tracing (DKT) and its variants are by far the most effective ones due to the high flexibility of the neural network. However, DKT…
Descriptors: Online Courses, Computer Assisted Instruction, Networks, Learning Analytics
Sha, Lele; Rakovic, Mladen; Li, Yuheng; Whitelock-Wainwright, Alexander; Carroll, David; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2021
Classifying educational forum posts is a longstanding task in the research of Learning Analytics and Educational Data Mining. Though this task has been tackled by applying both traditional Machine Learning (ML) approaches (e.g., Logistics Regression and Random Forest) and up-to-date Deep Learning (DL) approaches, there lacks a systematic…
Descriptors: Classification, Computer Mediated Communication, Learning Analytics, Data Analysis
Sanguino, Juan; Manrique, Rubén; Mariño, Olga; Linares-Vásquez, Mario; Cardozo, Nicolas – International Educational Data Mining Society, 2022
Recommender systems in educational contexts have proven effective to identify learning resources that fit the interests and needs of learners. Their usage has been of special interest in online self-learning scenarios to increase student retention and improve the learning experience. In current recommendation techniques, and in particular, in…
Descriptors: Data Analysis, Learning Analytics, Student Interests, Student Needs
Ong, Nathan; Zhu, Jiaye; Mossé, Daniel – International Educational Data Mining Society, 2022
Student grade prediction is a popular task for learning analytics, given grades are the traditional form of student performance. However, no matter the learning environment, student background, or domain content, there are things in common across most experiences in learning. In most previous machine learning models, previous grades are considered…
Descriptors: Prediction, Grades (Scholastic), Learning Analytics, Student Characteristics
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Yang, Kexin Bella; Echeverria, Vanessa; Wang, Xuejian; Lawrence, LuEttaMae; Holstein, Kenneth; Rummel, Nikol; Aleven, Vincent – International Educational Data Mining Society, 2021
Constructing effective and well-balanced learning groups is important for collaborative learning. Past research explored how group formation policies affect learners' behaviors and performance. With the different classroom contexts, many group formation policies work in theory, yet their feasibility is rarely investigated in authentic class…
Descriptors: Grouping (Instructional Purposes), Cooperative Learning, Teaching Methods, Kindergarten
Chu, Wei; Pavlik, Philip I., Jr. – International Educational Data Mining Society, 2023
In adaptive learning systems, various models are employed to obtain the optimal learning schedule and review for a specific learner. Models of learning are used to estimate the learner's current recall probability by incorporating features or predictors proposed by psychological theory or empirically relevant to learners' performance. Logistic…
Descriptors: Reaction Time, Accuracy, Models, Predictor Variables
Grimaldi, Phillip; Weatherholtz, Kodi; Hill, Kelli Millwood – International Educational Data Mining Society, 2022
As educational technology platforms become more and more commonplace in education, it is critical that these systems work well across a diverse range of student sub-groups. In this study, we estimated the effectiveness of MAP Accelerator; a large-scale, personalized, web-based, mathematics mastery learning platform. Our analysis placed a…
Descriptors: Educational Technology, Mastery Learning, Learning Management Systems, Middle School Students