NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karimov, Ayaz; Saarela, Mirka; Kärkkäinen, Tommi – International Educational Data Mining Society, 2023
Within the last decade, different educational data mining techniques, particularly quantitative methods such as clustering, and regression analysis are widely used to analyze the data from educational games. In this research, we implemented a quantitative data mining technique (clustering) to further investigate students' feedback. Students played…
Descriptors: Student Attitudes, Feedback (Response), Educational Games, Information Retrieval
Saarela, Mirka; Kärkkäinen, Tommi – International Educational Data Mining Society, 2015
Certain stereotypes can be associated with people from different countries. For example, the Italians are expected to be emotional, the Germans functional, and the Chinese hard-working. In this study, we cluster all 15-year-old students representing the 68 different nations and territories that participated in the latest Programme for…
Descriptors: Weighted Scores, Stereotypes, Standardized Tests, Student Characteristics
Trivedi, Shubhendu; Pardos, Zachary A.; Sarkozy, Gabor N.; Heffernan, Neil T. – International Educational Data Mining Society, 2012
Learning a more distributed representation of the input feature space is a powerful method to boost the performance of a given predictor. Often this is accomplished by partitioning the data into homogeneous groups by clustering so that separate models could be trained on each cluster. Intuitively each such predictor is a better representative of…
Descriptors: Homogeneous Grouping, Prediction, Tutors, Cluster Grouping