NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Yiqiao; Lynch, Collin F.; Barnes, Tiffany – International Educational Data Mining Society, 2018
Massive Open Online Courses (MOOCs) are designed on the assumption that good students will help poor students thus offloading the individual support tasks from the instructor to the class. However prior research has shown that this is not always true. Students in MOOCs tend to form distinct sub-communities and their grades are closely correlated…
Descriptors: Friendship, Online Courses, Peer Relationship, Social Networks
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Zhaorui; Demmans, Carrie – International Educational Data Mining Society, 2020
Discussion forums are used to support socio-collaborative learning processes among students in online courses. However, complex forum structures and lengthy discourse require that students spend their limited time searching and filtering through posts to find those that are relevant to them rather than spending that time engaged in other…
Descriptors: Cooperative Learning, Computer Mediated Communication, Recordkeeping, Online Courses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nguyen, Quan; Poquet, Oleksandra; Brooks, Christopher; Li, Warren – International Educational Data Mining Society, 2020
Network analysis in educational research has primarily relied on self-reported relationships or connections inferred from online learning environments, such as discussion forums. However, a large part of students' social connections through day-to-day on-campus encounters has remained underexplored. The paper examines spatial-temporal student…
Descriptors: Social Networks, Network Analysis, Data Analysis, Computer Networks
Eagle, Michael; Johnson, Matthew; Barnes, Tiffany – International Educational Data Mining Society, 2012
We introduce a novel data structure, the Interaction Network, for representing interaction-data from open problem solving environment tutors. We show how using network community detecting techniques are used to identify sub-goals in problems in a logic tutor. We then use those community structures to generate high level hints between sub-goals.…
Descriptors: Data Analysis, Interaction, Network Analysis, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jo, Yohan; Tomar, Gaurav; Ferschke, Oliver; Rosé, Carolyn P.; Gaševic, Dragan – International Educational Data Mining Society, 2016
An important research problem for Educational Data Mining is to expedite the cycle of data leading to the analysis of student learning processes and the improvement of support for those processes. For this goal in the context of social interaction in learning, we propose a three-part pipeline that includes data infrastructure, learning process…
Descriptors: Information Retrieval, Learning Processes, Interaction, Interpersonal Relationship
Rau, Martina A.; Pardos, Zachary A. – International Educational Data Mining Society, 2012
The goal of this paper is to use Knowledge Tracing to augment the results obtained from an experiment that investigated the effects of practice schedules using an intelligent tutoring system for fractions. Specifically, this experiment compared different practice schedules of multiple representations of fractions: representations were presented to…
Descriptors: Intelligent Tutoring Systems, Mathematics, Knowledge Level, Scheduling
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use