Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 6 |
Descriptor
Source
International Educational… | 6 |
Author
Barnes, Tiffany | 1 |
Barnes, Tiffany, Ed. | 1 |
Beck, Joseph E. | 1 |
Biswas, Gautam | 1 |
Buffett, Scott | 1 |
Chi, Min, Ed. | 1 |
Emond, Bruno | 1 |
Feng, Mingyu, Ed. | 1 |
Gitinabard, Niki | 1 |
Heckman, Sarah | 1 |
Kinnebrew, John S. | 1 |
More ▼ |
Publication Type
Reports - Research | 4 |
Speeches/Meeting Papers | 4 |
Collected Works - Proceedings | 2 |
Education Level
Higher Education | 3 |
Junior High Schools | 3 |
Middle Schools | 3 |
Postsecondary Education | 3 |
Secondary Education | 3 |
Elementary Education | 1 |
Grade 6 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Emond, Bruno; Buffett, Scott – International Educational Data Mining Society, 2015
This paper reports on results of applying process discovery mining and sequence classification mining techniques to a data set of semi-structured learning activities. The main research objective is to advance educational data mining to model and support self-regulated learning in heterogeneous environments of learning content, activities, and…
Descriptors: Data Analysis, Classification, Learning Activities, Inquiry
Gitinabard, Niki; Barnes, Tiffany; Heckman, Sarah; Lynch, Collin F. – International Educational Data Mining Society, 2019
Students' interactions with online tools can provide us with insights into their study and work habits. Prior research has shown that these habits, even as simple as the number of actions or the time spent on online platforms can distinguish between the higher performing students and low-performers. These habits are also often used to predict…
Descriptors: Blended Learning, Student Adjustment, Online Courses, Study Habits
Xiong, Xiaolu; Zhao, Siyuan; Van Inwegen, Eric G.; Beck, Joseph E. – International Educational Data Mining Society, 2016
Over the last couple of decades, there have been a large variety of approaches towards modeling student knowledge within intelligent tutoring systems. With the booming development of deep learning and large-scale artificial neural networks, there have been empirical successes in a number of machine learning and data mining applications, including…
Descriptors: Intelligent Tutoring Systems, Computer Software, Bayesian Statistics, Knowledge Level
Ye, Cheng; Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam – International Educational Data Mining Society, 2015
This paper discusses Multi-Feature Hierarchical Sequential Pattern Mining, MFH-SPAM, a novel algorithm that efficiently extracts patterns from students' learning activity sequences. This algorithm extends an existing sequential pattern mining algorithm by dynamically selecting the level of specificity for hierarchically-defined features…
Descriptors: Learning Activities, Learning Processes, Data Collection, Student Behavior
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection