Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 5 |
Descriptor
Data Collection | 5 |
Electronic Learning | 5 |
Models | 3 |
Data Analysis | 2 |
Educational Technology | 2 |
Homework | 2 |
Intelligent Tutoring Systems | 2 |
Logical Thinking | 2 |
Peer Evaluation | 2 |
Prediction | 2 |
STEM Education | 2 |
More ▼ |
Source
International Educational… | 5 |
Author
Publication Type
Reports - Research | 4 |
Speeches/Meeting Papers | 4 |
Collected Works - Proceedings | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Elementary Education | 1 |
Grade 6 | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Prihar, Ethan; Vanacore, Kirk; Sales, Adam; Heffernan, Neil – International Educational Data Mining Society, 2023
There is a growing need to empirically evaluate the quality of online instructional interventions at scale. In response, some online learning platforms have begun to implement rapid A/B testing of instructional interventions. In these scenarios, students participate in series of randomized experiments that evaluate problem-level interventions in…
Descriptors: Electronic Learning, Intervention, Instructional Effectiveness, Data Collection
Portnoff, Lucy; Gustafson, Erin; Rollinson, Joseph; Bicknell, Klinton – International Educational Data Mining Society, 2021
Students using self-directed learning platforms, such as Duolingo, cannot be adequately assessed relying solely on responses to standard learning exercises due to a lack of control over learners' choices in how to utilize the platform: for example, how learners choose to sequence their studying and how much they choose to revisit old material. To…
Descriptors: Second Language Learning, Language Tests, Educational Technology, Electronic Learning
Clavié, Benjamin; Gal, Kobi – International Educational Data Mining Society, 2020
We introduce DeepPerfEmb, or DPE, a new deep-learning model that captures dense representations of students' online behaviour and meta-data about students and educational content. The model uses these representations to predict student performance. We evaluate DPE on standard datasets from the literature, showing superior performance to the…
Descriptors: Student Behavior, Electronic Learning, Metadata, Prediction
Bhatanagar, Sameer; Zouaq, Amal; Desmarais, Michel C.; Charles, Elizabeth – International Educational Data Mining Society, 2020
Online "Peer Instruction" has become prevalent in many "flipped classroom" settings, yet little work has been done to examine the content students generate in such a learning environment. This study characterizes a dataset generated by an open-source, web-based homework system that prompts students to first answer questions,…
Descriptors: Peer Teaching, Electronic Learning, Educational Technology, Web Based Instruction
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection