NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shakya, Anup; Rus, Vasile; Venugopal, Deepak – International Educational Data Mining Society, 2023
Understanding a student's problem-solving strategy can have a significant impact on effective math learning using Intelligent Tutoring Systems (ITSs) and Adaptive Instructional Systems (AISs). For instance, the ITS/AIS can better personalize itself to correct specific misconceptions that are indicated by incorrect strategies, specific problems can…
Descriptors: Equal Education, Mathematics Education, Word Problems (Mathematics), Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Agarwal, Deepak; Baker, Ryan S.; Muraleedharan, Anupama – International Educational Data Mining Society, 2020
There has been considerable interest in techniques for modelling student learning across practice problems to drive real-time adaptive learning, with particular focus on variants of the classic Bayesian Knowledge Tracing (BKT) model proposed by Corbett & Anderson, 1995. Over time researches have proposed many variants of BKT with…
Descriptors: Intelligent Tutoring Systems, Models, Skill Development, Mastery Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ethan Prihar; Manaal Syed; Korinn Ostrow; Stacy Shaw; Adam Sales; Neil Heffernan – International Educational Data Mining Society, 2022
As online learning platforms become more ubiquitous throughout various curricula, there is a growing need to evaluate the effectiveness of these platforms and the different methods used to structure online education and tutoring. Towards this endeavor, some platforms have performed randomized controlled experiments to compare different user…
Descriptors: Educational Trends, Electronic Learning, Educational Experience, Educational Experiments
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Qiao; Maclellan, Christopher J. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms are embedded in Intelligent Tutoring Systems (ITS) to keep track of students' learning process. While knowledge tracing models have been extensively studied in offline settings, very little work has explored their use in online settings. This is primarily because conducting experiments to evaluate and select knowledge…
Descriptors: Electronic Learning, Mastery Learning, Computer Simulation, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sales, Adam C.; Pane, John F. – International Educational Data Mining Society, 2020
The design of the Cognitive Tutor Algebra I (CTA1) intelligent tutoring system assumes that students work through sections of material following a pre-specified order, and only move on from one section to the next after mastering the first section's skills. However, the software gives teachers the flexibility to override that structure, by…
Descriptors: Student Placement, Intelligent Tutoring Systems, Algebra, Mathematics Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nazaretsky, Tanya; Hershkovitz, Sara; Alexandron, Giora – International Educational Data Mining Society, 2019
Sequencing items in adaptive learning systems typically relies on a large pool of interactive question items that are analyzed into a hierarchy of skills, also known as Knowledge Components (KCs). Educational data mining techniques can be used to analyze students response data in order to optimize the mapping of items to KCs, with similarity-based…
Descriptors: Intelligent Tutoring Systems, Item Response Theory, Measurement, Testing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fancsali, Stephen E.; Li, Hao; Sandbothe, Michael; Ritter, Steven – International Educational Data Mining Society, 2021
Recent work describes methods for systematic, data-driven improvement to instructional content and calls for diverse teams of learning engineers to implement and evaluate such improvements. Focusing on an approach called "design-loop adaptivity," we consider the problem of how developers might use data to target or prioritize particular…
Descriptors: Instructional Development, Instructional Improvement, Data Use, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sales, Adam C.; Botelho, Anthony; Patikorn, Thanaporn; Heffernan, Neil T. – International Educational Data Mining Society, 2018
Randomized A/B tests in educational software are not run in a vacuum: often, reams of historical data are available alongside the data from a randomized trial. This paper proposes a method to use this historical data--often highdimensional and longitudinal--to improve causal estimates from A/B tests. The method proceeds in two steps: first, fit a…
Descriptors: Courseware, Data Analysis, Causal Models, Prediction
Mostafavi, Behrooz; Liu, Zhongxiu; Barnes, Tiffany – International Educational Data Mining Society, 2015
Deep Thought is a logic tutor where students practice constructing deductive logic proofs. Within Deep Thought is a data-driven mastery learning system (DDML), which calculates student proficiency based on rule scores weighted by expert-decided weights in order to assign problem sets of appropriate difficulty. In this study, we designed and tested…
Descriptors: Intelligent Tutoring Systems, Logical Thinking, Mathematical Logic, Mastery Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
an de Sande, Brett – International Educational Data Mining Society, 2016
Learning curves have proven to be a useful tool for understanding how a student learns a given skill as they progress through a curriculum. A learning curve for a given Knowledge Component (KC) is a plot of some measure of competence as a function of the number of opportunities the student has had to apply that KC. Consider the case where each…
Descriptors: Learning Processes, Knowledge Level, Problem Solving, Homework
Falakmasir, Mohammad; Yudelson, Michael; Ritter, Steve; Koedinger, Ken – International Educational Data Mining Society, 2015
Bayesian Knowledge Tracing (BKT) has been in wide use for modeling student skill acquisition in Intelligent Tutoring Systems (ITS). BKT tracks and updates student's latent mastery of a skill as a probability distribution of a binary variable. BKT does so by accounting for observed student successes in applying the skill correctly, where success is…
Descriptors: Bayesian Statistics, Models, Skill Development, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fang, Ying; Nye, Benjamin; Pavlik, Philip; Xu, Yonghong Jade; Graesser, Arthur; Hu, Xiangen – International Educational Data Mining Society, 2017
Student persistence in online learning environments has typically been studied at the macro-level (e.g., completion of an online course, number of academic terms completed, etc.). The current examines student persistence in an adaptive learning environment, ALEKS (Assessment and LEarning in Knowledge Spaces). Specifically, the study explores the…
Descriptors: Learning Processes, Academic Persistence, Correlation, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xiong, Xiaolu; Zhao, Siyuan; Van Inwegen, Eric G.; Beck, Joseph E. – International Educational Data Mining Society, 2016
Over the last couple of decades, there have been a large variety of approaches towards modeling student knowledge within intelligent tutoring systems. With the booming development of deep learning and large-scale artificial neural networks, there have been empirical successes in a number of machine learning and data mining applications, including…
Descriptors: Intelligent Tutoring Systems, Computer Software, Bayesian Statistics, Knowledge Level
Rollinson, Joseph; Brunskill, Emma – International Educational Data Mining Society, 2015
At their core, Intelligent Tutoring Systems consist of a student model and a policy. The student model captures the state of the student and the policy uses the student model to individualize instruction. Policies require different properties from the student model. For example, a mastery threshold policy requires the student model to have a way…
Descriptors: Prediction, Models, Educational Policy, Intelligent Tutoring Systems
Wan, Hao; Beck, Joseph Barbosa – International Educational Data Mining Society, 2015
The phenomenon of wheel spinning refers to students attempting to solve problems on a particular skill, but becoming stuck due to an inability to learn the skill. Past research has found that students who do not master a skill quickly tend not to master it at all. One question is why do students wheel spin? A plausible hypothesis is that students…
Descriptors: Skill Development, Problem Solving, Knowledge Level, Learning Processes
Previous Page | Next Page ยป
Pages: 1  |  2