Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 9 |
| Since 2017 (last 10 years) | 19 |
| Since 2007 (last 20 years) | 24 |
Descriptor
| Intelligent Tutoring Systems | 24 |
| Programming | 20 |
| Computer Science Education | 16 |
| Feedback (Response) | 14 |
| Prediction | 13 |
| Models | 12 |
| Teaching Methods | 12 |
| Artificial Intelligence | 10 |
| Data Analysis | 10 |
| Educational Technology | 9 |
| Foreign Countries | 9 |
| More ▼ | |
Source
| International Educational… | 24 |
Author
| Barnes, Tiffany | 3 |
| Singla, Adish | 3 |
| Barnes, Tiffany, Ed. | 2 |
| Feng, Mingyu, Ed. | 2 |
| Price, Thomas W. | 2 |
| Zhi, Rui | 2 |
| Alina Deriyeva | 1 |
| Badrinath, Anirudhan | 1 |
| Benjamin Paaßen | 1 |
| Boyer, Kristy Elizabeth, Ed. | 1 |
| Broisin, Julien | 1 |
| More ▼ | |
Publication Type
| Speeches/Meeting Papers | 16 |
| Reports - Research | 11 |
| Collected Works - Proceedings | 8 |
| Reports - Evaluative | 4 |
| Books | 1 |
| Reports - Descriptive | 1 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
What Works Clearinghouse Rating
Jesper Dannath; Alina Deriyeva; Benjamin Paaßen – International Educational Data Mining Society, 2025
Research on the effectiveness of Intelligent Tutoring Systems (ITSs) suggests that automatic hint generation has the best effect on learning outcomes when hints are provided on the level of intermediate steps. However, ITSs for programming tasks face the challenge to decide on the granularity of steps for feedback, since it is not a priori clear…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Undergraduate Students
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Badrinath, Anirudhan; Wang, Frederic; Pardos, Zachary – International Educational Data Mining Society, 2021
Bayesian Knowledge Tracing, a model used for cognitive mastery estimation, has been a hallmark of adaptive learning research and an integral component of deployed intelligent tutoring systems (ITS). In this paper, we provide a brief history of knowledge tracing model research and introduce pyBKT, an accessible and computationally efficient library…
Descriptors: Models, Markov Processes, Mathematics, Intelligent Tutoring Systems
Vassoyan, Jean; Vie, Jill-Jênn – International Educational Data Mining Society, 2023
Adaptive learning is an area of educational technology that consists in delivering personalized learning experiences to address the unique needs of each learner. An important subfield of adaptive learning is learning path personalization: it aims at designing systems that recommend sequences of educational activities to maximize students' learning…
Descriptors: Reinforcement, Networks, Simulation, Educational Technology
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education
Kumar, Amruth N. – International Educational Data Mining Society, 2023
Is there a pattern in how students solve Parsons puzzles? Is there a difference between the puzzle-solving strategies of C++ and Java students? We used Markov transition matrix to answer these questions. We analyzed the solutions of introductory programming students solving Parsons puzzles involving if-else statements and while loops in C++ and…
Descriptors: Markov Processes, Puzzles, Introductory Courses, Computer Science Education
Efremov, Aleksandr; Ghosh, Ahana; Singla, Adish – International Educational Data Mining Society, 2020
Intelligent tutoring systems for programming education can support students by providing personalized feedback when a student is stuck in a coding task. We study the problem of designing a hint policy to provide a next-step hint to students from their current partial solution, e.g., which line of code should be edited next. The state of the art…
Descriptors: Intelligent Tutoring Systems, Feedback (Response), Computer Science Education, Artificial Intelligence
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Singla, Adish; Theodoropoulos, Nikitas – International Educational Data Mining Society, 2022
Block-based visual programming environments are increasingly used to introduce computing concepts to beginners. Given that programming tasks are open-ended and conceptual, novice students often struggle when learning in these environments. AI-driven programming tutors hold great promise in automatically assisting struggling students, and need…
Descriptors: Programming, Computer Science Education, Task Analysis, Introductory Courses
Orr, J. Walker; Russell, Nathaniel – International Educational Data Mining Society, 2021
The assessment of program functionality can generally be accomplished with straight-forward unit tests. However, assessing the design quality of a program is a much more difficult and nuanced problem. Design quality is an important consideration since it affects the readability and maintainability of programs. Assessing design quality and giving…
Descriptors: Programming Languages, Feedback (Response), Units of Study, Computer Science Education
Paaßen, Benjamin; Jensen, Joris; Hammer, Barbara – International Educational Data Mining Society, 2016
The first intelligent tutoring systems for computer programming have been proposed more than 30 years ago, mostly focusing on well defined programming tasks e.g. in the context of logic programming. Recent systems also teach complex programs, where explicit modelling of every possible program and mistake is no longer possible. Such systems are…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Data
Broisin, Julien; Hérouard, Clément – International Educational Data Mining Society, 2019
How to support students in programming learning has been a great research challenge in the last years. To address this challenge, prior works have mainly focused on proposing solutions based on syntactic analysis to provide students with personalized feedback about their grammatical programming errors and misconceptions. However, syntactic…
Descriptors: Semantics, Programming, Syntax, Feedback (Response)
Price, Thomas W.; Dong, Yihuan; Barnes, Tiffany – International Educational Data Mining Society, 2016
Intelligent Tutoring Systems (ITSs) have shown success in the domain of programming, in part by providing customized hints and feedback to students. However, many popular novice programming environments still lack these intelligent features. This is due in part to their use of open-ended programming assignments, which are difficult to support with…
Descriptors: Intelligent Tutoring Systems, Programming, Data, Computer Science Education
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
