Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 8 |
Descriptor
Classification | 8 |
Learning Processes | 8 |
Student Behavior | 5 |
Problem Solving | 4 |
Teaching Methods | 4 |
Comparative Analysis | 3 |
Computer Software | 3 |
Data Analysis | 3 |
Mathematics Instruction | 3 |
Models | 3 |
Science Instruction | 3 |
More ▼ |
Source
International Educational… | 8 |
Author
Arner, Tracy | 1 |
Balyan, Renu | 1 |
Banawan, Michelle | 1 |
Barnes, Tiffany | 1 |
Biswas, Gautam | 1 |
Buffett, Scott | 1 |
Chen, Guanliang | 1 |
Chi, Min | 1 |
Emch, Andreas | 1 |
Emond, Bruno | 1 |
Gaševic, Dragan | 1 |
More ▼ |
Publication Type
Reports - Research | 7 |
Speeches/Meeting Papers | 7 |
Collected Works - Proceedings | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 4 |
Secondary Education | 3 |
Junior High Schools | 2 |
Middle Schools | 2 |
Elementary Education | 1 |
Grade 6 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Li, Yuheng; Rakovic, Mladen; Poh, Boon Xin; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2022
Learning objectives, especially those well defined by applying Bloom's taxonomy for Cognitive Objectives, have been widely recognized as important in various teaching and learning practices. However, many educators have difficulties developing learning objectives appropriate to the levels in Bloom's taxonomy, as they need to consider the…
Descriptors: Educational Objectives, Taxonomy, Universities, Cognitive Ability
Zhou, Yiqiu; Kang, Jina – International Educational Data Mining Society, 2022
The complex and dynamic nature of collaboration makes it challenging to find indicators of productive learning and quality collaboration. This exploratory study developed a collaboration metric to capture temporal patterns of joint attention (JA) based on log files generated as students interacted with an immersive astronomy simulation using…
Descriptors: Astronomy, Problem Solving, Science Instruction, Cooperative Learning
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Balyan, Renu; Arner, Tracy; Taylor, Karen; Shin, Jinnie; Banawan, Michelle; Leite, Walter L.; McNamara, Danielle S. – International Educational Data Mining Society, 2022
The National Council of Teachers of Mathematics (NCTM) has been emphasizing the importance of teachers' pedagogical communication as part of mathematical teaching and learning for decades. Specifically, NCTM has provided guidance on how teachers can foster mathematical communication that positively impacts student learning. A teacher may have…
Descriptors: Tutoring, Guidelines, Mathematics Instruction, Computer Assisted Instruction
Wampfler, Rafael; Emch, Andreas; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2020
Front camera data from tablets used in educational settings offer valuable clues to student behavior, attention, and affective state. Due to the camera's angle of view, the face of the student is partially occluded and skewed. This hinders the ability of experts to adequately capture the learning process and student states. In this paper, we…
Descriptors: Photography, Handheld Devices, Student Behavior, Affective Behavior
Emond, Bruno; Buffett, Scott – International Educational Data Mining Society, 2015
This paper reports on results of applying process discovery mining and sequence classification mining techniques to a data set of semi-structured learning activities. The main research objective is to advance educational data mining to model and support self-regulated learning in heterogeneous environments of learning content, activities, and…
Descriptors: Data Analysis, Classification, Learning Activities, Inquiry
Ye, Cheng; Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam – International Educational Data Mining Society, 2015
This paper discusses Multi-Feature Hierarchical Sequential Pattern Mining, MFH-SPAM, a novel algorithm that efficiently extracts patterns from students' learning activity sequences. This algorithm extends an existing sequential pattern mining algorithm by dynamically selecting the level of specificity for hierarchically-defined features…
Descriptors: Learning Activities, Learning Processes, Data Collection, Student Behavior
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection