NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…20
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rohani, Narjes; Gal, Kobi; Gallagher, Michael; Manataki, Areti – International Educational Data Mining Society, 2023
Massive Open Online Courses (MOOCs) make high-quality learning accessible to students from all over the world. On the other hand, they are known to exhibit low student performance and high dropout rates. Early prediction of student performance in MOOCs can help teachers intervene in time in order to improve learners' future performance. This is…
Descriptors: Prediction, Academic Achievement, Health Education, Data Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fancsali, Stephen E.; Murphy, April; Ritter, Steve – International Educational Data Mining Society, 2022
Ten years after the announcement of the "rise of the super experiment" at Educational Data Mining 2012, challenges to implementing "internet scale" educational experiments often persist for educational technology providers, especially when they seek to test substantive instructional interventions. Studies that deploy and test…
Descriptors: Learning Analytics, Educational Technology, Barriers, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Švábenský, Valdemar; Baker, Ryan S.; Zambrano, Andrés; Zou, Yishan; Slater, Stefan – International Educational Data Mining Society, 2023
Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and…
Descriptors: Generalization, Computer Mediated Communication, MOOCs, State Universities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doan, Thanh-Nam; Sahebi, Shaghayegh – International Educational Data Mining Society, 2019
One of the essential problems, in educational data mining, is to predict students' performance on future learning materials, such as problems, assignments, and quizzes. Pioneer algorithms for predicting student performance mostly rely on two sources of information: students' past performance, and learning materials' domain knowledge model. The…
Descriptors: Data Analysis, Performance Factors, Prediction, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cook, Joshua; Lynch, Collin F.; Hicks, Andrew G.; Mostafavi, Behrooz – International Educational Data Mining Society, 2017
BKT and other classical student models are designed for binary environments where actions are either correct or incorrect. These models face limitations in open-ended and data-driven environments where actions may be correct but non-ideal or where there may even be degrees of error. In this paper we present BKT-SR and RKT-SR: extensions of the…
Descriptors: Models, Bayesian Statistics, Data Use, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jo, Yohan; Tomar, Gaurav; Ferschke, Oliver; Rosé, Carolyn P.; Gaševic, Dragan – International Educational Data Mining Society, 2016
An important research problem for Educational Data Mining is to expedite the cycle of data leading to the analysis of student learning processes and the improvement of support for those processes. For this goal in the context of social interaction in learning, we propose a three-part pipeline that includes data infrastructure, learning process…
Descriptors: Information Retrieval, Learning Processes, Interaction, Interpersonal Relationship
Ye, Cheng; Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam – International Educational Data Mining Society, 2015
This paper discusses Multi-Feature Hierarchical Sequential Pattern Mining, MFH-SPAM, a novel algorithm that efficiently extracts patterns from students' learning activity sequences. This algorithm extends an existing sequential pattern mining algorithm by dynamically selecting the level of specificity for hierarchically-defined features…
Descriptors: Learning Activities, Learning Processes, Data Collection, Student Behavior
Emond, Bruno; Buffett, Scott – International Educational Data Mining Society, 2015
This paper reports on results of applying process discovery mining and sequence classification mining techniques to a data set of semi-structured learning activities. The main research objective is to advance educational data mining to model and support self-regulated learning in heterogeneous environments of learning content, activities, and…
Descriptors: Data Analysis, Classification, Learning Activities, Inquiry
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wen, Miaomiao; Maki, Keith; Wang, Xu; Dow, Steven P.; Herbsleb, James; Rose, Carolyn – International Educational Data Mining Society, 2016
To create a satisfying social learning experience, an emerging challenge in educational data mining is to automatically assign students into effective learning teams. In this paper, we utilize discourse data mining as the foundation for an online team-formation procedure. The procedure features a deliberation process prior to team assignment,…
Descriptors: Educational Research, Data Collection, Cooperative Learning, Predictor Variables
Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol – International Educational Data Mining Society, 2015
Student models for adaptive systems may not model collaborative learning optimally. Past research has either focused on modeling individual learning or for collaboration, has focused on group dynamics or group processes without predicting learning. In the current paper, we adjust the Additive Factors Model (AFM), a standard logistic regression…
Descriptors: Educational Environment, Predictive Measurement, Predictor Variables, Cooperative Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Niu, Ke; Niu, Zhendong; Zhao, Xiangyu; Wang, Can; Kang, Kai; Ye, Min – International Educational Data Mining Society, 2016
User clustering algorithms have been introduced to analyze users' learning behaviors and help to provide personalized learning guides in traditional Web-based learning systems. However, the explicit and implicit coupled interactions, which means the correlations between user attributes generated from learning actions, are not considered in these…
Descriptors: Web Based Instruction, Student Needs, User Needs (Information), Mathematics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xiong, Xiaolu; Zhao, Siyuan; Van Inwegen, Eric G.; Beck, Joseph E. – International Educational Data Mining Society, 2016
Over the last couple of decades, there have been a large variety of approaches towards modeling student knowledge within intelligent tutoring systems. With the booming development of deep learning and large-scale artificial neural networks, there have been empirical successes in a number of machine learning and data mining applications, including…
Descriptors: Intelligent Tutoring Systems, Computer Software, Bayesian Statistics, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ren, Zhiyun; Rangwala, Huzefa; Johri, Aditya – International Educational Data Mining Society, 2016
The past few years has seen the rapid growth of data mining approaches for the analysis of data obtained from Massive Open Online Courses (MOOCs). The objectives of this study are to develop approaches to predict the scores a student may achieve on a given grade-related assessment based on information, considered as prior performance or prior…
Descriptors: Large Group Instruction, Online Courses, Educational Technology, Technology Uses in Education
Santos, Olga Cristina, Ed.; Boticario, Jesus Gonzalez, Ed.; Romero, Cristobal, Ed.; Pechenizkiy, Mykola, Ed.; Merceron, Agathe, Ed.; Mitros, Piotr, Ed.; Luna, Jose Maria, Ed.; Mihaescu, Cristian, Ed.; Moreno, Pablo, Ed.; Hershkovitz, Arnon, Ed.; Ventura, Sebastian, Ed.; Desmarais, Michel, Ed. – International Educational Data Mining Society, 2015
The 8th International Conference on Educational Data Mining (EDM 2015) is held under auspices of the International Educational Data Mining Society at UNED, the National University for Distance Education in Spain. The conference held in Madrid, Spain, July 26-29, 2015, follows the seven previous editions (London 2014, Memphis 2013, Chania 2012,…
Descriptors: Data Analysis, Educational Research, Computer Uses in Education, Integrated Learning Systems
Previous Page | Next Page »
Pages: 1  |  2