Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 13 |
Descriptor
Classification | 13 |
Mathematics | 13 |
Prediction | 11 |
Data Analysis | 7 |
Models | 7 |
Accuracy | 6 |
Artificial Intelligence | 5 |
Comparative Analysis | 5 |
Foreign Countries | 5 |
Problem Solving | 5 |
Statistical Analysis | 5 |
More ▼ |
Source
International Educational… | 13 |
Author
Barnes, Tiffany, Ed. | 2 |
Luna, J. M. | 2 |
Romero, C. | 2 |
Ventura, S. | 2 |
Abreu, Rui | 1 |
Andrews-Todd, Jessica | 1 |
Balyan, Renu | 1 |
Chi, Min, Ed. | 1 |
Cruz, Luís | 1 |
D'Mello, Sidney K. | 1 |
Feng, Mingyu, Ed. | 1 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 10 |
Reports - Research | 8 |
Collected Works - Proceedings | 3 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 8 |
Postsecondary Education | 8 |
Secondary Education | 6 |
Junior High Schools | 5 |
Middle Schools | 5 |
High Schools | 2 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 6 | 1 |
Intermediate Grades | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Hu, Qian; Rangwala, Huzefa – International Educational Data Mining Society, 2020
Over the past decade, machine learning has become an integral part of educational technologies. With more and more applications such as students' performance prediction, course recommendation, dropout prediction and knowledge tracing relying upon machine learning models, there is increasing evidence and concerns about bias and unfairness of these…
Descriptors: Artificial Intelligence, Bias, Learning Analytics, Statistical Analysis
Say What? Automatic Modeling of Collaborative Problem Solving Skills from Student Speech in the Wild
Pugh, Samuel L.; Subburaj, Shree Krishna; Rao, Arjun Ramesh; Stewart, Angela E. B.; Andrews-Todd, Jessica; D'Mello, Sidney K. – International Educational Data Mining Society, 2021
We investigated the feasibility of using automatic speech recognition (ASR) and natural language processing (NLP) to classify collaborative problem solving (CPS) skills from recorded speech in noisy environments. We analyzed data from 44 dyads of middle and high school students who used videoconferencing to collaboratively solve physics and math…
Descriptors: Problem Solving, Cooperation, Middle School Students, High School Students
Wampfler, Rafael; Klingler, Severin; Solenthaler, Barbara; Schinazi, Victor R.; Gross, Markus – International Educational Data Mining Society, 2019
The role of affective states in learning has recently attracted considerable attention in education research. The accurate prediction of affective states can help increase the learning gain by incorporating targeted interventions that are capable of adjusting to changes in the individual affective states of students. Until recently, most work on…
Descriptors: Affective Behavior, Prediction, Problem Solving, Mathematics
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – International Educational Data Mining Society, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
Li, Yuntao; Fu, Chengzhen; Zhang, Yan – International Educational Data Mining Society, 2017
Since MOOC is suffering high dropout rate, researchers try to explore the reasons and mitigate it. Focusing on this task, we employ a composite model to infer behaviors of learners in the coming weeks based on his/her history log of learning activities, including interaction with video lectures, participation in discussion forum, and performance…
Descriptors: Online Courses, Mass Instruction, Student Behavior, Learning Activities
Luo, Ling; Koprinska, Irena; Liu, Wei – International Educational Data Mining Society, 2015
In this paper we consider discrimination-aware classification of educational data. Mining and using rules that distinguish groups of students based on sensitive attributes such as gender and nationality may lead to discrimination. It is desirable to keep the sensitive attributes during the training of a classifier to avoid information loss but…
Descriptors: Classification, Data Analysis, Case Studies, Prediction
Strecht, Pedro; Cruz, Luís; Soares, Carlos; Mendes-Moreira, João; Abreu, Rui – International Educational Data Mining Society, 2015
Predicting the success or failure of a student in a course or program is a problem that has recently been addressed using data mining techniques. In this paper we evaluate some of the most popular classification and regression algorithms on this problem. We address two problems: prediction of approval/failure and prediction of grade. The former is…
Descriptors: Comparative Analysis, Classification, Regression (Statistics), Mathematics
González-Brenes, José P.; Huang, Yun – International Educational Data Mining Society, 2015
Classification evaluation metrics are often used to evaluate adaptive tutoring systems-- programs that teach and adapt to humans. Unfortunately, it is not clear how intuitive these metrics are for practitioners with little machine learning background. Moreover, our experiments suggest that existing convention for evaluating tutoring systems may…
Descriptors: Intelligent Tutoring Systems, Evaluation Methods, Program Evaluation, Student Behavior
Molina, M. M.; Luna, J. M.; Romero, C.; Ventura, S. – International Educational Data Mining Society, 2012
This paper proposes to the use of a meta-learning approach for automatic parameter tuning of a well-known decision tree algorithm by using past information about algorithm executions. Fourteen educational datasets were analysed using various combinations of parameter values to examine the effects of the parameter values on accuracy classification.…
Descriptors: Case Studies, Mathematics, Data Analysis, Accuracy
Lopez, M. I.; Luna, J. M.; Romero, C.; Ventura, S. – International Educational Data Mining Society, 2012
This paper proposes a classification via clustering approach to predict the final marks in a university course on the basis of forum data. The objective is twofold: to determine if student participation in the course forum can be a good predictor of the final marks for the course and to examine whether the proposed classification via clustering…
Descriptors: Classification, Prediction, Grades (Scholastic), College Freshmen
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection