NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…58
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 58 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Philip I. Pavlik; Luke G. Eglington – International Educational Data Mining Society, 2023
This paper presents a tool for creating student models in logistic regression. Creating student models has typically been done by expert selection of the appropriate terms, beginning with models as simple as IRT or AFM but more recently with highly complex models like BestLR. While alternative methods exist to select the appropriate predictors for…
Descriptors: Students, Models, Regression (Statistics), Alternative Assessment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bulathwela, Sahan; Verma, Meghana; Pérez-Ortiz, María; Yilmaz, Emine; Shawe-Taylor, John – International Educational Data Mining Society, 2022
This work explores how population-based engagement prediction can address cold-start at scale in large learning resource collections. The paper introduces: (1) VLE, a novel dataset that consists of content and video based features extracted from publicly available scientific video lectures coupled with implicit and explicit signals related to…
Descriptors: Video Technology, Lecture Method, Data Analysis, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hutt, Stephen; Das, Sanchari; Baker, Ryan S. – International Educational Data Mining Society, 2023
The General Data Protection Regulation (GDPR) in the European Union contains directions on how user data may be collected, stored, and when it must be deleted. As similar legislation is developed around the globe, there is the potential for repercussions across multiple fields of research, including educational data mining (EDM). Over the past two…
Descriptors: Data Analysis, Decision Making, Data Collection, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marwan, Samiha; Shi, Yang; Menezes, Ian; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2021
Feedback on how students progress through completing subgoals can improve students' learning and motivation in programming. Detecting subgoal completion is a challenging task, and most learning environments do so either with "expert-authored" models or with "data-driven" models. Both models have advantages that are…
Descriptors: Expertise, Models, Feedback (Response), Identification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moore, Russell; Caines, Andrew; Elliott, Mark; Zaidi, Ahmed; Rice, Andrew; Buttery, Paula – International Educational Data Mining Society, 2019
Educational systems use models of student skill to inform decision-making processes. Defining such models manually is challenging due to the large number of relevant factors. We propose learning multidimensional representations (embeddings) from student activity data -- these are fixed-length real vectors with three desirable characteristics:…
Descriptors: Models, Knowledge Representation, Skills, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jiang, Weijie; Pardos, Zachary A. – International Educational Data Mining Society, 2020
Data mining of course enrollment and course description records has soared as institutions of higher education begin tapping into the value of these data for academic and internal research purposes. This has led to a more than doubling of papers on course prediction tasks every year. The papers often center around a single prediction task and…
Descriptors: Course Descriptions, Models, Prediction, Course Selection (Students)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chaudhry, Ritwick; Singh, Harvineet; Dogga, Pradeep; Saini, Shiv Kumar – International Educational Data Mining Society, 2018
Interactive learning environments facilitate learning by providing hints to fill the gaps in the understanding of a concept. Studies suggest that hints are not used optimally by learners. Either they are used unnecessarily or not used at all. It has been shown that learning outcomes can be improved by providing hints when needed. An effective…
Descriptors: Student Behavior, Prediction, Models, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Švábenský, Valdemar; Baker, Ryan S.; Zambrano, Andrés; Zou, Yishan; Slater, Stefan – International Educational Data Mining Society, 2023
Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and…
Descriptors: Generalization, Computer Mediated Communication, MOOCs, State Universities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chung, Cheng-Yu; Hsiao, I-Han – International Educational Data Mining Society, 2021
The distributed practice effect suggests that students retain learning content better when they pace their practice over time. The key factors are practice dosage (intensity) and timing (when to practice and how in between). Inspired by the thriving development of image recognition, this study adopts one of the successful techniques,…
Descriptors: Models, Drills (Practice), Pacing, Computer Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Slater, Stefan; Baker, Ryan S.; Wang, Yeyu – International Educational Data Mining Society, 2020
Feature engineering, the construction of contextual and relevant features from system log data, is a crucial component of developing robust and interpretable models in educational data mining contexts. The practice of feature engineering depends on domain experts and system developers working in tandem in order to creatively identify actions and…
Descriptors: Data Analysis, Engineering, Classification, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doan, Thanh-Nam; Sahebi, Shaghayegh – International Educational Data Mining Society, 2019
One of the essential problems, in educational data mining, is to predict students' performance on future learning materials, such as problems, assignments, and quizzes. Pioneer algorithms for predicting student performance mostly rely on two sources of information: students' past performance, and learning materials' domain knowledge model. The…
Descriptors: Data Analysis, Performance Factors, Prediction, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jiménez, Haydée G.; Casanova, Marco A.; Finamore, Anna Carolina; Simões, Gonçalo – International Educational Data Mining Society, 2021
Sentiment Analysis is a field of Natural Language Processing which aims at classifying the author's sentiment in text. This paper first describes a sentiment analysis model for students' comments about professor performance. The model achieved impressive results for comments collected from student surveys conducted at a private university in…
Descriptors: Natural Language Processing, Data Analysis, Classification, Student Surveys
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clavié, Benjamin; Gal, Kobi – International Educational Data Mining Society, 2020
We introduce DeepPerfEmb, or DPE, a new deep-learning model that captures dense representations of students' online behaviour and meta-data about students and educational content. The model uses these representations to predict student performance. We evaluate DPE on standard datasets from the literature, showing superior performance to the…
Descriptors: Student Behavior, Electronic Learning, Metadata, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sha, Lele; Rakovic, Mladen; Li, Yuheng; Whitelock-Wainwright, Alexander; Carroll, David; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2021
Classifying educational forum posts is a longstanding task in the research of Learning Analytics and Educational Data Mining. Though this task has been tackled by applying both traditional Machine Learning (ML) approaches (e.g., Logistics Regression and Random Forest) and up-to-date Deep Learning (DL) approaches, there lacks a systematic…
Descriptors: Classification, Computer Mediated Communication, Learning Analytics, Data Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4