NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…10
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ALSaad, Fareedah; Reichel, Thomas; Zeng, Yuchen; Alawini, Abdussalam – International Educational Data Mining Society, 2021
With the emergence of MOOCs, it becomes crucial to automate the process of a course design to accommodate the diverse learning demands of students. Modeling the relationships among educational topics is a fundamental first step for automating curriculum planning and course design. In this paper, we introduce "Topic Transition Map" (TTM),…
Descriptors: Online Courses, Student Diversity, Student Needs, Course Content
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khan, Md Akib Zabed; Polyzou, Agoritsa – International Educational Data Mining Society, 2023
Academic advising plays an important role in students' decision-making in higher education. Data-driven methods provide useful recommendations to students to help them with degree completion. Several course recommendation models have been proposed in the literature to recommend courses for the next semester. One aspect of the data that has yet to…
Descriptors: Course Selection (Students), Learning Analytics, Academic Advising, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Polyzou, Agoritsa; Nikolakopoulos, Athanasios N.; Karypis, George – International Educational Data Mining Society, 2019
Course selection is a crucial and challenging problem that students have to face while navigating through an undergraduate degree program. The decisions they make shape their future in ways that they cannot conceive in advance. Available departmental sample degree plans are not personalized for each student, and personal discussion time with an…
Descriptors: Markov Processes, Course Selection (Students), Undergraduate Students, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Choffin, Benoît; Popineau, Fabrice; Bourda, Yolaine; Vie, Jill-Jênn – International Educational Data Mining Society, 2019
Spaced repetition is among the most studied learning strategies in the cognitive science literature. It consists in temporally distributing exposure to an information so as to improve long-term memorization. Providing students with an adaptive and personalized distributed practice schedule would benefit more than just a generic scheduler. However,…
Descriptors: Intervals, Scheduling, Repetition, Memorization
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Käser, Tanja; Schwartz, Daniel L. – International Educational Data Mining Society, 2019
Open-ended learning environments (OELEs) allow students to freely interact with the content and to discover important principles and concepts of the learning domain on their own. However, only some students possess the necessary skills for efficient and effective exploration. Guidance in the form of targeted interventions or feedback therefore has…
Descriptors: Educational Environment, Interaction, Cluster Grouping, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cook, Joshua; Lynch, Collin F.; Hicks, Andrew G.; Mostafavi, Behrooz – International Educational Data Mining Society, 2017
BKT and other classical student models are designed for binary environments where actions are either correct or incorrect. These models face limitations in open-ended and data-driven environments where actions may be correct but non-ideal or where there may even be degrees of error. In this paper we present BKT-SR and RKT-SR: extensions of the…
Descriptors: Models, Bayesian Statistics, Data Use, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Binglin; West, Matthew; Ziles, Craig – International Educational Data Mining Society, 2018
This paper attempts to quantify the accuracy limit of "nextitem-correct" prediction by using numerical optimization to estimate the student's probability of getting each question correct given a complete sequence of item responses. This optimization is performed without an explicit parameterized model of student behavior, but with the…
Descriptors: Accuracy, Probability, Student Behavior, Test Items
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Min, Wookhee; Wiggins, Joseph B.; Pezzullo, Lydia G.; Vail, Alexandria K.; Boyer, Kristy Elizabeth; Mott, Bradford W.; Frankosky, Megan H.; Wiebe, Eric N.; Lester, James C. – International Educational Data Mining Society, 2016
Recent years have seen a growing interest in intelligent game-based learning environments featuring virtual agents. A key challenge posed by incorporating virtual agents in game-based learning environments is dynamically determining the dialogue moves they should make in order to best support students' problem solving. This paper presents a…
Descriptors: Prediction, Models, Intelligent Tutoring Systems, Computer Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection