Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 15 |
Since 2016 (last 10 years) | 28 |
Since 2006 (last 20 years) | 29 |
Descriptor
Computer Science Education | 29 |
Programming | 29 |
Feedback (Response) | 11 |
Intelligent Tutoring Systems | 11 |
Classification | 10 |
Coding | 9 |
Prediction | 9 |
Teaching Methods | 9 |
College Students | 8 |
Data Analysis | 8 |
Models | 8 |
More ▼ |
Source
International Educational… | 29 |
Author
Barnes, Tiffany | 9 |
Price, Thomas W. | 5 |
Chi, Min | 4 |
Shi, Yang | 3 |
Singla, Adish | 3 |
Zhi, Rui | 3 |
Boyer, Kristy Elizabeth | 2 |
Cohen, Anat | 2 |
Dong, Yihuan | 2 |
Gabbay, Hagit | 2 |
Heckman, Sarah | 2 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 27 |
Reports - Research | 23 |
Collected Works - Proceedings | 2 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2022
In computer science education timely help seeking during large programming projects is essential for student success. Help-seeking in typical courses happens in office hours and through online forums. In this research, we analyze students coding activities and help requests to understand the interaction between these activities. We collected…
Descriptors: Computer Science Education, College Students, Programming, Coding
Cleuziou, Guillaume; Flouvat, Frédéric – International Educational Data Mining Society, 2021
Improving the pedagogical effectiveness of programming training platforms is a hot topic that requires the construction of fine and exploitable representations of learners' programs. This article presents a new approach for learning program embeddings. Starting from the hypothesis that the function of a program, but also its "style", can…
Descriptors: Programming, Computer Science Education, Electronic Learning, Data Analysis
Jahnke, Maximilian; Höppner, Frank – International Educational Data Mining Society, 2022
The value of an instructor is that she exactly recognizes what the learner is struggling with and provides constructive feedback straight to the point. This work aims at a step towards this type of feedback in the context of an introductory programming course, where students perform program execution tracing to align their understanding of Java…
Descriptors: Programming, Coding, Computer Science Education, Error Patterns
Fein, Benedikt; Graßl, Isabella; Beck, Florian; Fraser, Gordon – International Educational Data Mining Society, 2022
The recent trend of embedding source code for machine learning applications also enables new opportunities in learning analytics in programming education, but which code embedding approach is most suitable for learning analytics remains an open question. A common approach to embedding source code lies in extracting syntactic information from a…
Descriptors: Artificial Intelligence, Learning Analytics, Programming, Programming Languages
Höppner, Frank – International Educational Data Mining Society, 2021
Various similarity measures for source code have been proposed, many rely on edit- or tree-distance. To support a lecturer in quickly assessing live or online exercises with respect to "approaches taken by the students," we compare source code on a more abstract, semantic level. Even if novice student's solutions follow the same idea,…
Descriptors: Coding, Classification, Programming, Computer Science Education
Gabbay, Hagit; Cohen, Anat – International Educational Data Mining Society, 2022
The challenge of learning programming in a MOOC is twofold: acquiring programming skills and learning online, independently. Automated testing and feedback systems, often offered in programming courses, may scaffold MOOC learners by providing immediate feedback and unlimited re-submissions of code assignments. However, research still lacks…
Descriptors: Automation, Feedback (Response), Student Behavior, MOOCs
Gitinabard, Niki; Okoilu, Ruth; Xu, Yiqao; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin – International Educational Data Mining Society, 2020
Teamwork, often mediated by version control systems such as Git and Apache Subversion (SVN), is central to professional programming. As a consequence, many colleges are incorporating both collaboration and online development environments into their curricula even in introductory courses. In this research, we collected GitHub logs from two…
Descriptors: Teamwork, Group Activities, Student Projects, Programming
Efremov, Aleksandr; Ghosh, Ahana; Singla, Adish – International Educational Data Mining Society, 2020
Intelligent tutoring systems for programming education can support students by providing personalized feedback when a student is stuck in a coding task. We study the problem of designing a hint policy to provide a next-step hint to students from their current partial solution, e.g., which line of code should be edited next. The state of the art…
Descriptors: Intelligent Tutoring Systems, Feedback (Response), Computer Science Education, Artificial Intelligence
Gabbay, Hagit; Cohen, Anat – International Educational Data Mining Society, 2023
In MOOCs for programming, Automated Testing and Feedback (ATF) systems are frequently integrated, providing learners with immediate feedback on code assignments. The analysis of the large amounts of trace data collected by these systems may provide insights into learners' patterns of utilizing the automated feedback, which is crucial for the…
Descriptors: MOOCs, Feedback (Response), Teaching Methods, Learning Strategies
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Singla, Adish; Theodoropoulos, Nikitas – International Educational Data Mining Society, 2022
Block-based visual programming environments are increasingly used to introduce computing concepts to beginners. Given that programming tasks are open-ended and conceptual, novice students often struggle when learning in these environments. AI-driven programming tutors hold great promise in automatically assisting struggling students, and need…
Descriptors: Programming, Computer Science Education, Task Analysis, Introductory Courses
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Previous Page | Next Page »
Pages: 1 | 2