NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Abubakir Siedahmed; Jaclyn Ocumpaugh; Zelda Ferris; Dinesh Kodwani; Eamon Worden; Neil Heffernan – International Educational Data Mining Society, 2025
Recent advances in AI have opened the door for the automated scoring of open-ended math problems, which were previously much more difficult to assess at scale. However, we know that biases still remain in some of these algorithms. For example, recent research on the automated scoring of student essays has shown that certain varieties of English…
Descriptors: Artificial Intelligence, Automation, Scoring, Mathematics Tests
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Baral, Sami; Botelho, Anthony; Santhanam, Abhishek; Gurung, Ashish; Cheng, Li; Heffernan, Neil – International Educational Data Mining Society, 2023
Teachers often rely on the use of a range of open-ended problems to assess students' understanding of mathematical concepts. Beyond traditional conceptions of student open-ended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended…
Descriptors: Mathematics Instruction, Mathematical Concepts, Problem Solving, Test Format
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lu, Chang; Cutumisu, Maria – International Educational Data Mining Society, 2021
Digitalization and automation of test administration, score reporting, and feedback provision have the potential to benefit large-scale and formative assessments. Many studies on automated essay scoring (AES) and feedback generation systems were published in the last decade, but few connected AES and feedback generation within a unified framework.…
Descriptors: Learning Processes, Automation, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Crossley, Scott; Kyle, Kristopher; Davenport, Jodi; McNamara, Danielle S. – International Educational Data Mining Society, 2016
This study introduces the Constructed Response Analysis Tool (CRAT), a freely available tool to automatically assess student responses in online tutoring systems. The study tests CRAT on a dataset of chemistry responses collected in the ChemVLab+. The findings indicate that CRAT can differentiate and classify student responses based on semantic…
Descriptors: Intelligent Tutoring Systems, Chemistry, Natural Language Processing, High School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Allen, Laura K.; Jacovina, Matthew E.; Dascalu, Mihai; Roscoe, Rod D.; Kent, Kevin M.; Likens, Aaron D.; McNamara, Danielle S. – International Educational Data Mining Society, 2016
This study investigates how and whether information about students' writing can be recovered from basic behavioral data extracted during their sessions in an intelligent tutoring system for writing. We calculate basic and time-sensitive keystroke indices based on log files of keys pressed during students' writing sessions. A corpus of prompt-based…
Descriptors: Writing Processes, Intelligent Tutoring Systems, Natural Language Processing, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Li, Haiying; Cai, Zhiqiang; Graesser, Arthur – International Educational Data Mining Society, 2016
In this paper, we applied the crowdsourcing approach to develop an automated popularity summary scoring, called wild summaries. In contrast, the golden standard summaries generated by one or more experts are called expert summaries. The innovation of our study is to compute LSA (Latent Semantic Analysis) similarities between target summary and…
Descriptors: Peer Acceptance, Electronic Publishing, Collaborative Writing, Grading
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis