NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhao, Yijun; Lackaye, Bryan; Dy, Jennifier G.; Brodley, Carla E. – International Educational Data Mining Society, 2020
Accurately predicting which students are best suited for graduate programs is beneficial to both students and colleges. In this paper, we propose a quantitative machine learning approach to predict an applicant's potential performance in the graduate program. Our work is based on a real world dataset consisting of MS in CS [Master of Science in…
Descriptors: Artificial Intelligence, College Admission, Masters Programs, Professional Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Backenköhler, Michael; Scherzinger, Felix; Singla, Adish; Wolf, Verena – International Educational Data Mining Society, 2018
Course selection can be a daunting task, especially for first year students. Sub-optimal selection can lead to bad performance of students and increase the dropout rate. Given the availability of historic data about student performances, it is possible to aid students in the selection of appropriate courses. Here, we propose a method to compose a…
Descriptors: Data, Course Selection (Students), Information Utilization, Individualized Instruction