Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 18 |
Since 2006 (last 20 years) | 36 |
Descriptor
Source
International Journal of… | 36 |
Author
Publication Type
Journal Articles | 36 |
Reports - Research | 21 |
Reports - Descriptive | 9 |
Reports - Evaluative | 6 |
Information Analyses | 2 |
Education Level
Higher Education | 6 |
Postsecondary Education | 5 |
High Schools | 3 |
Elementary Secondary Education | 2 |
Grade 8 | 2 |
Secondary Education | 2 |
Adult Education | 1 |
Elementary Education | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Junior High Schools | 1 |
More ▼ |
Audience
Location
Pennsylvania | 2 |
California | 1 |
Canada | 1 |
Costa Rica | 1 |
France | 1 |
Greece | 1 |
Iowa | 1 |
Iraq | 1 |
Japan | 1 |
Massachusetts | 1 |
New York | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
MacLellan, Christopher J.; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2022
Intelligent tutoring systems are effective for improving students' learning outcomes (Pane et al. 2013; Koedinger and Anderson, "International Journal of Artificial Intelligence in Education," 8, 1-14, 1997; Bowen et al. "Journal of Policy Analysis and Management," 1, 94-111 2013). However, constructing tutoring systems that…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Instructional Design
Galafassi, Cristiano; Galafassi, Fabiane Flores Penteado; Vicari, Rosa Maria; Reategui, Eliseo Berni – International Journal of Artificial Intelligence in Education, 2023
This work presents the intelligent tutoring system, EvoLogic, developed to assist students in problems of natural production in propositional logic. EvoLogic has been modeled as a multiagent system composed of three autonomous agents: interface, pedagogical and specialist agents. It supports pedagogical strategies inspired by the theory of…
Descriptors: Intelligent Tutoring Systems, Logical Thinking, Models, Teaching Methods
Lu, Yu; Wang, Deliang; Chen, Penghe; Meng, Qinggang; Yu, Shengquan – International Journal of Artificial Intelligence in Education, 2023
As a prominent aspect of modeling learners in the education domain, knowledge tracing attempts to model learner's cognitive process, and it has been studied for nearly 30 years. Driven by the rapid advancements in deep learning techniques, deep neural networks have been recently adopted for knowledge tracing and have exhibited unique advantages…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Data Analysis
Schulz, Sandra; McLaren, Bruce M.; Pinkwart, Niels – International Journal of Artificial Intelligence in Education, 2023
This paper develops a method for the construction and evaluation of cognitive models to support students in their problem-solving skills during robotics in school, aiming to build a basis for an implementation of a tutoring system in the future. Two Wizard-of-Oz studies were conducted, one in the classroom and one in the lab. Based on the…
Descriptors: Cognitive Processes, Models, Intelligent Tutoring Systems, Robotics
Eglington, Luke G.; Pavlik, Philip I., Jr. – International Journal of Artificial Intelligence in Education, 2023
An important component of many Adaptive Instructional Systems (AIS) is a 'Learner Model' intended to track student learning and predict future performance. Predictions from learner models are frequently used in combination with mastery criterion decision rules to make pedagogical decisions. Important aspects of learner models, such as learning…
Descriptors: Computer Assisted Instruction, Intelligent Tutoring Systems, Learning Processes, Individual Differences
Bull, Susan – International Journal of Artificial Intelligence in Education, 2021
For the special issue of the International Journal of Artificial Intelligence in Education dedicated to the memory of Jim Greer, this paper highlights some of Jim's extensive and always-timely contributions to the field: from his early AI-focussed research on intelligent tutoring systems, through a variety of applications deployed to support…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Educational Research, College Students
Linking Dialogue with Student Modelling to Create an Adaptive Tutoring System for Conceptual Physics
Katz, Sandra; Albacete, Patricia; Chounta, Irene-Angelica; Jordan, Pamela; McLaren, Bruce M.; Zapata-Rivera, Diego – International Journal of Artificial Intelligence in Education, 2021
Jim Greer and his colleagues argued that student modelling is essential to provide adaptive instruction in tutoring systems and showed that effective modelling is possible, despite being enormously challenging. Student modelling plays a prominent role in many intelligent tutoring systems (ITSs) that address problem-solving domains. However,…
Descriptors: Physics, Science Instruction, Pretests Posttests, Scores
Goldberg, Benjamin; Amburn, Charles; Ragusa, Charlie; Chen, Dar-Wei – International Journal of Artificial Intelligence in Education, 2018
The U.S. Army is interested in extending the application of intelligent tutoring systems (ITS) beyond cognitive problem spaces and into psychomotor skill domains. In this paper, we present a methodology and validation procedure for creating expert model representations in the domain of rifle marksmanship. GIFT (Generalized Intelligent Framework…
Descriptors: Psychomotor Skills, Intelligent Tutoring Systems, Program Validation, Models
Mitrovic, Antonija; Suraweera, Pramuditha – International Journal of Artificial Intelligence in Education, 2016
Design tasks are difficult to teach, due to large, unstructured solution spaces, underspecified problems, non-existent problem solving algorithms and stopping criteria. In this paper, we comment on our approach to develop KERMIT, a constraint-based tutor that taught database design. In later work, we re-implemented KERMIT as EER-Tutor, and…
Descriptors: Database Design, Intelligent Tutoring Systems, Problem Solving, Semantics
Aleven, Vincent; Roll, Ido; McLaren, Bruce M.; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2016
Help seeking is an important process in self-regulated learning (SRL). It may influence learning with intelligent tutoring systems (ITSs), because many ITSs provide help, often at the student's request. The Help Tutor was a tutor agent that gave in-context, real-time feedback on students' help-seeking behavior, as they were learning with an ITS.…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Help Seeking, Feedback (Response)
Baker, Michael J. – International Journal of Artificial Intelligence in Education, 2016
This article is a commentary on a model for negotiation in teaching-learning dialogues (Baker 1994) that traces its origins and developments over the past 20 years. The first main section of the paper describes the research background out of which the model arose, within the "credo" of individualised tutoring of the 1980s. This is…
Descriptors: Intelligent Tutoring Systems, Cooperative Learning, Persuasive Discourse, Interpersonal Relationship
Matsuda, Noboru; Cohen, William W.; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2015
SimStudent is a machine-learning agent initially developed to help novice authors to create cognitive tutors without heavy programming. Integrated into an existing suite of software tools called Cognitive Tutor Authoring Tools (CTAT), SimStudent helps authors to create an expert model for a cognitive tutor by tutoring SimStudent on how to solve…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Simulation, Models
Ohlsson, Stellan – International Journal of Artificial Intelligence in Education, 2016
The ideas behind the constraint-based modeling (CBM) approach to the design of intelligent tutoring systems (ITSs) grew out of attempts in the 1980's to clarify how declarative and procedural knowledge interact during skill acquisition. The learning theory that underpins CBM was based on two conceptual innovations. The first innovation was to…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Learning Theories
Ogan, Amy; Walker, Erin; Baker, Ryan; Rodrigo, Ma. Mercedes T.; Soriano, Jose Carlo; Castro, Maynor Jimenez – International Journal of Artificial Intelligence in Education, 2015
In recent years, there has been increasing interest in automatically assessing help seeking, the process of referring to resources outside of oneself to accomplish a task or solve a problem. Research in the United States has shown that specific help-seeking behaviors led to better learning within intelligent tutoring systems. However, intelligent…
Descriptors: Help Seeking, Cultural Differences, Automation, Intelligent Tutoring Systems
Baker, Ryan S. – International Journal of Artificial Intelligence in Education, 2016
The initial vision for intelligent tutoring systems involved powerful, multi-faceted systems that would leverage rich models of students and pedagogies to create complex learning interactions. But the intelligent tutoring systems used at scale today are much simpler. In this article, I present hypotheses on the factors underlying this development,…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Hypothesis Testing, Data Collection