NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Journal of…20
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Matsuda, Noboru – International Journal of Artificial Intelligence in Education, 2022
This paper demonstrates that a teachable agent (TA) can play a dual role in an online learning environment (OLE) for learning by teaching--the teachable agent working as a synthetic peer for students to learn by teaching and as an interactive tool for cognitive task analysis when authoring an OLE for learning by teaching. We have developed an OLE…
Descriptors: Artificial Intelligence, Teaching Methods, Intelligent Tutoring Systems, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Jennings, Jay; Muldner, Kasia – International Journal of Artificial Intelligence in Education, 2021
When students are first learning to program, they not only have to learn to write programs, but also how to trace them. Code tracing involves stepping through a program step-by-step, which helps to predict the output of the program and identify bugs. Students routinely struggle with this activity, as evidenced by prior work and our own experiences…
Descriptors: Scaffolding (Teaching Technique), Tutors, Tutoring, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Rivers, Kelly; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2017
To provide personalized help to students who are working on code-writing problems, we introduce a data-driven tutoring system, ITAP (Intelligent Teaching Assistant for Programming). ITAP uses state abstraction, path construction, and state reification to automatically generate personalized hints for students, even when given states that have not…
Descriptors: Programming, Coding, Computers, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Dermeval, Diego; Paiva, Ranilson; Bittencourt, Ig Ibert; Vassileva, Julita; Borges, Daniel – International Journal of Artificial Intelligence in Education, 2018
Authoring tools have been broadly used to design Intelligent Tutoring Systems (ITS). However, ITS community still lacks a current understanding of how authoring tools are used by non-programmer authors to design ITS. Hence, the objective of this work is to review how authoring tools have been supporting ITS design for non-programmer authors. In…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Software, Evidence
Peer reviewed Peer reviewed
Direct linkDirect link
Matsuda, Noboru; Cohen, William W.; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2015
SimStudent is a machine-learning agent initially developed to help novice authors to create cognitive tutors without heavy programming. Integrated into an existing suite of software tools called Cognitive Tutor Authoring Tools (CTAT), SimStudent helps authors to create an expert model for a cognitive tutor by tutoring SimStudent on how to solve…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Aleven, Vincent; McLaren, Bruce M.; Sewall, Jonathan; van Velsen, Martin; Popescu, Octav; Demi, Sandra; Ringenberg, Michael; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2016
In 2009, we reported on a new Intelligent Tutoring Systems (ITS) technology, example-tracing tutors, that can be built without programming using the Cognitive Tutor Authoring Tools (CTAT). Creating example-tracing tutors was shown to be 4-8 times as cost-effective as estimates for ITS development from the literature. Since 2009, CTAT and its…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Programming, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Sottilare, Robert A.; Shawn Burke, C.; Salas, Eduardo; Sinatra, Anne M.; Johnston, Joan H.; Gilbert, Stephen B. – International Journal of Artificial Intelligence in Education, 2018
The goal of this research was the development of a practical architecture for the computer-based tutoring of teams. This article examines the relationship of team behaviors as antecedents to successful team performance and learning during adaptive instruction guided by Intelligent Tutoring Systems (ITSs). Adaptive instruction is a training or…
Descriptors: Meta Analysis, Teaching Methods, Teamwork, Outcomes of Education
Peer reviewed Peer reviewed
Direct linkDirect link
Murray, Tom – International Journal of Artificial Intelligence in Education, 2016
Intelligent Tutoring Systems authoring tools are highly complex educational software applications used to produce highly complex software applications (i.e. ITSs). How should our assumptions about the target users (authors) impact the design of authoring tools? In this article I first reflect on the factors leading to my original 1999 article on…
Descriptors: Usability, Programming, Computer Software, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Weragama, Dinesha; Reye, Jim – International Journal of Artificial Intelligence in Education, 2014
Programming is a subject that many beginning students find difficult. The PHP Intelligent Tutoring System (PHP ITS) has been designed with the aim of making it easier for novices to learn the PHP language in order to develop dynamic web pages. Programming requires practice. This makes it necessary to include practical exercises in any ITS that…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Suraweera, Pramuditha; Mitrovic, Antonija; Martin, Brent – International Journal of Artificial Intelligence in Education, 2010
Intelligent Tutoring Systems (ITS) are effective tools for education. However, developing them is a labour-intensive and time-consuming process. A major share of the effort is devoted to acquiring the domain knowledge that underlies the system's intelligence. The goal of this research is to reduce this knowledge acquisition bottleneck and better…
Descriptors: Intelligent Tutoring Systems, Programming, Engineering, Tutoring
Peer reviewed Peer reviewed
Direct linkDirect link
Benjamin D. Nye; Arthur C. Graesser; Xiangen Hu – International Journal of Artificial Intelligence in Education, 2014
AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Software, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Le, Nguyen-Thinh; Menzel, Wolfgang – International Journal of Artificial Intelligence in Education, 2009
In this paper, we introduce logic programming as a domain that exhibits some characteristics of being ill-defined. In order to diagnose student errors in such a domain, we need a means to hypothesise the student's intention, that is the strategy underlying her solution. This is achieved by weighting constraints, so that hypotheses about solution…
Descriptors: Intelligent Tutoring Systems, Logical Thinking, Programming, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lynch, Collin; Ashley, Kevin D.; Pinkwart, Niels; Aleven, Vincent – International Journal of Artificial Intelligence in Education, 2009
In this paper we consider prior definitions of the terms "ill-defined domain" and "ill-defined problem". We then present alternate definitions that better support research at the intersection of Artificial Intelligence and Education. In our view both problems and domains are ill-defined when essential concepts, relations, or criteria are un- or…
Descriptors: Definitions, Artificial Intelligence, Problem Solving, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Baschera, Gian-Marco; Gross, Markus – International Journal of Artificial Intelligence in Education, 2010
We present an inference algorithm for perturbation models based on Poisson regression. The algorithm is designed to handle unclassified input with multiple errors described by independent mal-rules. This knowledge representation provides an intelligent tutoring system with local and global information about a student, such as error classification…
Descriptors: Foreign Countries, Spelling, Intelligent Tutoring Systems, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Aleven, Vincent; McLaren, Bruce M.; Sewall, Jonathan; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2009
The Cognitive Tutor Authoring Tools (CTAT) support creation of a novel type of tutors called example-tracing tutors. Unlike other types of ITSs (e.g., model-tracing tutors, constraint-based tutors), example-tracing tutors evaluate student behavior by flexibly comparing it against generalized examples of problem-solving behavior. Example-tracing…
Descriptors: Feedback (Response), Student Behavior, Intelligent Tutoring Systems, Problem Solving
Previous Page | Next Page ยป
Pages: 1  |  2