NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Journal of…1
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing one result Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Dexin; DiStefano, Christine; Zheng, Xiaying; Liu, Ren; Jiang, Zhehan – International Journal of Behavioral Development, 2021
This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML…
Descriptors: Growth Models, Maximum Likelihood Statistics, Factor Analysis, Sample Size