NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 33 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Detchat Samart – International Journal of Mathematical Education in Science and Technology, 2024
For a given rational number r, a classical theorem of Niven asserts that if cos(rp) is rational, then cos(rp) [element-of] {0,±1,±1/2}. In this note, we extend Niven's theorem to quadratic irrationalities and present an elementary proof of that.
Descriptors: Mathematics Instruction, Teaching Methods, Validity, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, Seán M. – International Journal of Mathematical Education in Science and Technology, 2022
For integrals consisting of rational functions of sine and cosine a set of little known rules known as the Bioche rules are considered. The rules, which consist of testing the differential form of the integral for invariance under one of three simple substitutions x [right arrow] -- x, [pi] -- x, and [pi] + x, allow one to decide which of the…
Descriptors: Mathematics Instruction, Trigonometry, Mathematical Concepts, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Cunningham, Daniel W. – International Journal of Mathematical Education in Science and Technology, 2018
Modern calculus textbooks carefully illustrate how to perform integration by trigonometric substitution. Unfortunately, most of these books do not adequately justify this powerful technique of integration. In this article, we present an accessible proof that establishes the validity of integration by trigonometric substitution. The proof offers…
Descriptors: Mathematics Education, Trigonometry, Calculus, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Yeung, Wing-Leung; Ng, Oi-Lam – International Journal of Mathematical Education in Science and Technology, 2022
In this paper, we introduce a technology-enhanced pedagogical sequence for supporting lower secondary school students' sense-making of the concept of volume in a non-procedural and non-formula-driven way. Specifically, we illustrate a novel approach of using dynamic geometric environment (DGE) to introduce the meaning of volume and then deriving…
Descriptors: Geometry, Mathematics Instruction, Teaching Methods, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Wares, Arsalan – International Journal of Mathematical Education in Science and Technology, 2019
The purpose of this note is to discuss how paper folding can be used to find the exact trigonometric ratios of the following four angles: 22.5°, 67.5°, 27°, and 63°.
Descriptors: Mathematics Instruction, Teaching Methods, Manipulative Materials, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Libeskind, Shlomo; Stupel, Moshe; Oxman, Victor – International Journal of Mathematical Education in Science and Technology, 2018
In this paper, we highlight examples from school mathematics in which invariance did not receive the attention it deserves. We describe how problems related to invariance stimulated the interest of both teachers and students. In school mathematics, invariance is of particular relevance in teaching and learning geometry. When permitted change…
Descriptors: Mathematics Instruction, Mathematical Concepts, Geometry, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Oxman, Victor; Stupel, Moshe – International Journal of Mathematical Education in Science and Technology, 2018
A geometrical task is presented with multiple solutions using different methods, in order to show the connection between various branches of mathematics and to highlight the importance of providing the students with an extensive 'mathematical toolbox'. Investigation of the property that appears in the task was carried out using a computerized tool.
Descriptors: Mathematics Instruction, Problem Solving, Geometry, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Sigler, Avi; Segal, Ruti; Stupel, Moshe – International Journal of Mathematical Education in Science and Technology, 2016
Solution of problems in mathematics, and in particular in the field of Euclidean geometry is in many senses a form of artisanship that can be developed so that in certain cases brief and unexpected solutions may be obtained, which would bring out aesthetically pleasing mathematical traits. We present four geometric tasks for which different proofs…
Descriptors: Mathematical Logic, Validity, Mathematics, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Chandwani, G. N. – International Journal of Mathematical Education in Science and Technology, 2012
Some new methods of integrating composite functions of transcendental functions are presented.
Descriptors: Mathematics Instruction, Mathematical Concepts, Trigonometry, Mathematical Formulas
Peer reviewed Peer reviewed
Direct linkDirect link
Winkel, Brian – International Journal of Mathematical Education in Science and Technology, 2012
We present background and an activity meant to show both instructors and students that mere button pushing with technology is insufficient for success, but that additional thought and preparation will permit the technology to serve as an excellent tool in the understanding and learning of mathematics. (Contains 5 figures.)
Descriptors: Educational Technology, Computer Assisted Instruction, Mathematics Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Goldberg, Mayer – International Journal of Mathematical Education in Science and Technology, 2012
In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…
Descriptors: Calculus, Problem Solving, Computation, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Poon, Kin-Keung – International Journal of Mathematical Education in Science and Technology, 2012
This article focuses on a simple trigonometric problem that generates a strange phenomenon when different methods are applied to tackling it. A series of problem-solving activities are discussed, so that students can be alerted that the precision of diagrams is important when solving geometric problems. In addition, the problem-solving plan was…
Descriptors: Geometric Concepts, Problem Solving, Trigonometry, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Benacka, Jan – International Journal of Mathematical Education in Science and Technology, 2012
In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and…
Descriptors: Trigonometry, Mathematics Activities, Mathematics, Mathematics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Yu-Dong; Zhang, Zhi-Hua; Liang, Chun-Lei – International Journal of Mathematical Education in Science and Technology, 2010
In this short note, by using one of Li and Liu's theorems [K.-H. Li, "The solution of CIQ. 39," "Commun. Stud. Inequal." 11(1) (2004), p. 162 (in Chinese)], "s-R-r" method, Cauchy's inequality and the theory of convex function, we solve some geometric inequalities conjectures relating to an interior point in triangle. (Contains 1 figure.)
Descriptors: Mathematics Education, Geometric Concepts, Trigonometry, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Yan – International Journal of Mathematical Education in Science and Technology, 2009
A closed form solution for the trigonometric integral [integral]sec[superscript 2k+1]xdx, k=0,1,2,..., is presented in this article. The result will fill the gap in another trigonometric integral [integral]sec[superscript 2m+1] x tan[superscript 2n]xdx, which is neglected by most of the calculus textbooks due to its foreseeable unorthodox solution…
Descriptors: Calculus, Mathematics Instruction, Problem Solving, Trigonometry
Previous Page | Next Page »
Pages: 1  |  2  |  3