NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Cumber, Peter – International Journal of Mathematical Education in Science and Technology, 2021
Mechanical engineering students often find the formulation and analysis of dynamical systems difficult. The response of some mechanical engineering undergraduates is that as much as possible courses on mechanics are best avoided. The aim of this paper is to produce some interesting dynamical systems that may help to change the opinions of the…
Descriptors: Engineering, Mechanics (Physics), Scientific Concepts, Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Cumber, Peter S. – International Journal of Mathematical Education in Science and Technology, 2017
It is well known that mechanical engineering students often find mechanics a difficult area to grasp. This article describes a system of equations describing the motion of a balanced and an unbalanced roller constrained by a pivot arm. A wide range of dynamics can be simulated with the model. The equations of motion are embedded in a graphical…
Descriptors: Visualization, Mechanics (Physics), Engineering Education, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Maiti, Alakes; Patra, Bibek; Samanta, G. P. – International Journal of Mathematical Education in Science and Technology, 2008
The present article deals with the problem of combined harvesting of a Michaelis-Menten-type ratio-dependent predator-prey system. The problem of determining the optimal harvest policy is solved by invoking Pontryagin's Maximum Principle. Dynamic optimization of the harvest policy is studied by taking the combined harvest effort as a dynamic…
Descriptors: Computer Simulation, Mathematical Models, Validity, Mathematical Logic
Peer reviewed Peer reviewed
Callender, J. T.; Jackson, R. – International Journal of Mathematical Education in Science and Technology, 1998
Analyzes the mathematics of rotational and translational motion and how one can influence the other in the context of cams and cranks. Describes how the individual components can be brought together to simulate a four-stroke engine and how the engine animates again using the same simple macro. (Author/ASK)
Descriptors: Computer Simulation, Computer Uses in Education, Educational Technology, Mathematical Models