NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 39 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hamide Dogan – International Journal of Mathematical Education in Science and Technology, 2023
This paper discusses findings from an ongoing study investigating mental mechanisms involved in the conceptualisation of linear transformations from the perspective of Action (A), Process (P), Object (O), and Schema (S) (APOS) theory. Data reported in this paper came from 44 first-year linear algebra students' responses on a task regarding the…
Descriptors: Cognitive Processes, Mathematics Skills, Concept Formation, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Barahmand, Ali – International Journal of Mathematical Education in Science and Technology, 2020
The purpose of the present article is to investigate the definition of matrix multiplication as a central issue in linear algebra courses. Applying both historical and pedagogical approaches, it focuses on the philosophy of generating the usual matrix multiplication, as a special binary operation, with its partly unexpected form compared with the…
Descriptors: Definitions, Matrices, Multiplication, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Akhtyamov, Azamat; Amram, Meirav; Mouftakhov, Artour – International Journal of Mathematical Education in Science and Technology, 2018
In this paper, we reconstruct matrices from their minors, and give explicit formulas for the reconstruction of matrices of orders 2 × 3, 2 × 4, 2 × n, 3 × 6 and m × n. We also formulate the Plücker relations, which are the conditions of the existence of a matrix related to its given minors.
Descriptors: Matrices, Algebra, Mathematics Instruction, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Caglayan, Günhan – International Journal of Mathematical Education in Science and Technology, 2018
This linear algebra note offers teaching and learning ideas in the treatment of the inner product space R[superscript m x n] in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools…
Descriptors: Algebra, Class Activities, Mathematics Instruction, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Trenkler, Götz; Trenkler, Dietrich – International Journal of Mathematical Education in Science and Technology, 2017
Given three planes in space, a complete characterization of their intersection is provided. Special attention is paid to the case when the intersection set does not exist of one point only. Besides the vector cross product, the tool of generalized inverse of a matrix is used extensively.
Descriptors: Algebra, Geometric Concepts, Equations (Mathematics), Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Andrews-Larson, Christine; Wawro, Megan; Zandieh, Michelle – International Journal of Mathematical Education in Science and Technology, 2017
In this paper, we present a hypothetical learning trajectory (HLT) aimed at supporting students in developing flexible ways of reasoning about matrices as linear transformations in the context of introductory linear algebra. In our HLT, we highlight the integral role of the instructor in this development. Our HLT is based on the "Italicizing…
Descriptors: Algebra, Mathematics Instruction, Matrices, Mathematics Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Dobbs, David E. – International Journal of Mathematical Education in Science and Technology, 2013
An elementary proof using matrix theory is given for the following criterion: if "F"/"K" and "L"/"K" are field extensions, with "F" and "L" both contained in a common extension field, then "F" and "L" are linearly disjoint over "K" if (and only if) some…
Descriptors: Mathematical Logic, Validity, Algebra, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Debnath, L. – International Journal of Mathematical Education in Science and Technology, 2014
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
Descriptors: Matrices, Equations (Mathematics), Algebra, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Withers, Christopher S.; Nadarajah, Saralees – International Journal of Mathematical Education in Science and Technology, 2010
We extend the well-known identity, log det A = tr log A, for any square non-singular matrix A.
Descriptors: Algebra, Matrices, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G. – International Journal of Mathematical Education in Science and Technology, 2012
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
Descriptors: Statistical Data, Matrices, Mathematics Instruction, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Dobbs, David E. – International Journal of Mathematical Education in Science and Technology, 2012
This note explains how Emil Artin's proof that row rank equals column rank for a matrix with entries in a field leads naturally to the formula for the nullity of a matrix and also to an algorithm for solving any system of linear equations in any number of variables. This material could be used in any course on matrix theory or linear algebra.
Descriptors: Matrices, Mathematics Instruction, Validity, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Debnath, L. – International Journal of Mathematical Education in Science and Technology, 2014
This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…
Descriptors: Matrices, Mathematics Instruction, Mathematical Concepts, Geometry
Peer reviewed Peer reviewed
Direct linkDirect link
Montiel, Mariana; Wilhelmi, Miguel R.; Vidakovic, Draga; Elstak, Iwan – International Journal of Mathematical Education in Science and Technology, 2012
In a previous study, the onto-semiotic approach was employed to analyse the mathematical notion of different coordinate systems, as well as some situations and university students' actions related to these coordinate systems in the context of multivariate calculus. This study approaches different coordinate systems through the process of change of…
Descriptors: Calculus, Matrices, Semiotics, Linguistic Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Baksalary, Oskar Maria; Trenkler, Gotz – International Journal of Mathematical Education in Science and Technology, 2010
By considering a general representation of proper rotation matrices, the eigenvalues and eigenspaces of those matrices are identified.
Descriptors: Matrices, Algebra, Factor Analysis, Spatial Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Broyles, Chris; Muller, Lars; Tikoo, Mohan; Wang, Haohao – International Journal of Mathematical Education in Science and Technology, 2010
The singularity of a projective conic can be determined via the associated matrix to the implicit equation of the projective conic. In this expository article, we will first derive a known result for determining the singularity of a projective conic via the associated matrix. Then we will introduce the concepts of [mu]-basis of the parametric…
Descriptors: Geometric Concepts, Algebra, Matrices, Equations (Mathematics)
Previous Page | Next Page »
Pages: 1  |  2  |  3