Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 14 |
Descriptor
Source
Journal of Chemical Education | 38 |
Author
Publication Type
Journal Articles | 38 |
Reports - Descriptive | 38 |
Book/Product Reviews | 2 |
Guides - Classroom - Teacher | 1 |
Non-Print Media | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 11 |
Postsecondary Education | 9 |
High Schools | 1 |
Audience
Teachers | 9 |
Practitioners | 7 |
Students | 2 |
Researchers | 1 |
Location
North Carolina | 1 |
Spain | 1 |
Wisconsin | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Elijah St. Germain – Journal of Chemical Education, 2025
Many approaches to teaching Newman projections and conformational manipulation rely on lecturing using only two-dimensional representations. While molecular models are recognized as useful learning tools, students are often left to figure out how to use them during the initial learning process. The availability of basic online molecular models…
Descriptors: Organic Chemistry, Science Instruction, Competency Based Education, Teaching Methods
Li, Yuguang C.; Melenbrink, Elizabeth L.; Cordonier, Guy J.; Boggs, Christopher; Khan, Anupama; Isaac, Morko Kwembur; Nkhonjera, Lameck Kabambalika; Bahati, David; Billinge, Simon J.; Haile, Sossina M.; Kreuter, Rodney A.; Crable, Robert M.; Mallouk, Thomas E. – Journal of Chemical Education, 2018
This paper presents a teaching kit that combines the fabrication of a low-cost microcontroller-based potentiostat and a LabVIEW-generated graphical user interface. The potentiostat enables undergraduate-level students to learn electroanalytical techniques and characterize energy conversion devices such as solar cells. The purpose of this teaching…
Descriptors: Computer Software, Chemistry, Science Instruction, Computer Graphics
Arrabal-Campos, Francisco M.; Cortés-Villena, Alejandro; Fernández, Ignacio – Journal of Chemical Education, 2017
This paper presents a programming project named NMRviewer that allows students to visualize transformed and processed 1 H NMR data in an accessible, interactive format while allowing instructors to incorporate programming content into the chemistry curricula. Using the MATLAB graphical user interface development environment (GUIDE), students can…
Descriptors: Coding, Programming, Undergraduate Study, Undergraduate Students
Potratz, Jeffrey P. – Journal of Chemical Education, 2017
An interactive classroom demonstration that enhances students' knowledge of steady-state and Michaelis-Menten enzyme kinetics is described. The instructor uses a free version of professional-quality KinTek Explorer simulation software and student input to construct dynamic versions of three static hallmark images commonly used to introduce enzyme…
Descriptors: Biochemistry, Kinetics, Computer Simulation, Courseware
Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie – Journal of Chemical Education, 2016
Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…
Descriptors: Energy Education, Power Technology, Scientific Concepts, Scientific Principles
Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H. – Journal of Chemical Education, 2016
Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…
Descriptors: Chemistry, Computer Graphics, Models, Undergraduate Students
Álvarez-Rúa, Carmen; Borge, Javier – Journal of Chemical Education, 2016
Thermodynamic processes are complex phenomena that can be understood as a set of successive stages. When treating processes, classical thermodynamics (and most particularly, the Gibbsian formulation, predominantly used in chemistry) only pays attention to initial and final states. However, reintroducing the notion of process is absolutely…
Descriptors: Undergraduate Study, Science Education, Chemistry, Thermodynamics
Smiar, Karen; Mendez, J. D. – Journal of Chemical Education, 2016
Molecular model kits have been used in chemistry classrooms for decades but have seen very little recent innovation. Using 3D printing, three sets of physical models were created for a first semester, introductory chemistry course. Students manipulated these interactive models during class activities as a supplement to existing teaching tools for…
Descriptors: Molecular Structure, Computer Graphics, Printed Materials, Models
Glasser, Leslie – Journal of Chemical Education, 2014
We introduce various methods which are used to depict three-dimensional objects on two-dimensional surfaces. Many of these are artistic and not conducive to exact interpretation. Instead, the scientific and engineering practices and mathematics of orthographic projection are introduced, and illustrated in an accompanying interactive Excel…
Descriptors: Science Education, Illustrations, Computer Graphics, Scientific Concepts
Teplukhin, Alexander; Babikov, Dmitri – Journal of Chemical Education, 2015
In our three-dimensional world, one can plot, see, and comprehend a function of two variables at most, V(x,y). One cannot plot a function of three or more variables. For this reason, visualization of the potential energy function in its full dimensionality is impossible even for the smallest polyatomic molecules, such as triatomics. This creates…
Descriptors: Science Instruction, Visualization, Energy, College Science
Meyer, Scott C. – Journal of Chemical Education, 2015
An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…
Descriptors: College Science, Undergraduate Study, Science Laboratories, Science Experiments
Casas, Lluís; Estop, Euge`nia – Journal of Chemical Education, 2015
Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…
Descriptors: Geometry, Models, Printing, Physical Sciences
Jennings, Ashley S. – Journal of Chemical Education, 2010
To solve the challenge of learning VSEPR molecules in three dimensions, a high school student leverages her passion for 3D computer animation to develop a creative solution. This article outlines the process and story behind the creation of her unique video. (Contains 1 figure.)
Descriptors: Animation, Computer Graphics, High School Students, Molecular Structure
Esteb, John J.; McNulty, LuAnne M.; Magers, John; Morgan, Paul; Wilson, Anne M. – Journal of Chemical Education, 2010
The ability to use computer-based technology is an essential skill set for students majoring in chemistry. This exercise details the introduction of appropriate uses for this technology in the organic chemistry series. The incorporation of chemically appropriate online resources (module 1), scientific databases (module 2), and the use of a…
Descriptors: Organic Chemistry, College Science, Science Instruction, Undergraduate Students

Moore, John W., Ed. – Journal of Chemical Education, 1982
Describes computer programs (available from authors) including molecular input to computer, programs for quantum chemistry, library orientation to technical literature, plotting potentiometric titration data, simulating oscilloscope curves, organic qualitative analysis with dynamic graphics, extended Huckel calculations, and calculator programs…
Descriptors: Calculators, Chemistry, College Science, Computer Graphics