Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 6 |
Descriptor
Chemistry | 6 |
Computation | 6 |
College Science | 4 |
Computer Simulation | 3 |
Programming | 3 |
Programming Languages | 3 |
Undergraduate Students | 3 |
Coding | 2 |
Computer Uses in Education | 2 |
Science Education | 2 |
Artificial Intelligence | 1 |
More ▼ |
Source
Journal of Chemical Education | 6 |
Author
Publication Type
Journal Articles | 6 |
Reports - Descriptive | 3 |
Reports - Research | 3 |
Education Level
Higher Education | 4 |
Postsecondary Education | 4 |
Secondary Education | 1 |
Audience
Location
United Kingdom (London) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Echeverri-Jimenez, Emmanuel; Oliver-Hoyo, Maria – Journal of Chemical Education, 2021
Gaussian-2-Blender is an open-source application programming interface (API) written in Python that allows for the conversion of Gaussian input files to 3D objects of different formats. This new tool was developed in response to the shortcomings of available programs to import Gaussian calculations into augmented reality (AR) or virtual reality…
Descriptors: Chemistry, Programming Languages, Computation, Computer Simulation
Elizabeth Stippell; Alexey V. Akimov; Oleg V. Prezhdo – Journal of Chemical Education, 2023
We report an educational tool for the upper level undergraduate quantum chemistry or quantum physics course that uses a symbolic approach via the PySyComp Python library. The tool covers both time-independent and time-dependent quantum chemistry, with the latter rarely considered in the foundations course due to topic complexity. We use quantized…
Descriptors: Undergraduate Students, College Science, Quantum Mechanics, Chemistry
Gianmarc Grazioli; Adam Ingwerson; David Santiago Jr.; Patrick Regan; Heekun Cho – Journal of Chemical Education, 2023
Computational chemistry instructional activities are often based around students running chemical simulations via a graphical user interface (GUI). GUI-based activities offer many advantages, as they enable students to run chemical simulations with a few mouse clicks. Although these activities are excellent for introducing students to the…
Descriptors: Computation, Chemistry, Teaching Methods, Science Education
Thrall, Elizabeth S.; Lee, Seung Eun; Schrier, Joshua; Zhao, Yijun – Journal of Chemical Education, 2021
Techniques from the branch of artificial intelligence known as machine learning (ML) have been applied to a wide range of problems in chemistry. Nonetheless, there are very few examples of pedagogical activities to introduce ML to chemistry students in the chemistry education literature. Here we report a computational activity that introduces…
Descriptors: Undergraduate Students, Artificial Intelligence, Man Machine Systems, Science Education
Matsumoto, Paul S.; Cao, Jiankang – Journal of Chemical Education, 2017
Computational thinking is a component of the Science and Engineering Practices in the Next Generation Science Standards, which were adopted by some states. We describe the activities in a high school chemistry course that may develop students' computational thinking skills by primarily using Excel, a widely available spreadsheet software. These…
Descriptors: Secondary School Science, High School Students, Computation, Thinking Skills
Bougot-Robin, Kristelle; Paget, Jack; Atkins, Stephen C.; Edel, Joshua B. – Journal of Chemical Education, 2016
It is not uncommon for students to view laboratory instruments as black boxes. Unfortunately, this can often result in poor experimental results and interpretation. To tackle this issue, a laboratory course was designed to enable students not only to critically think about operating principles of the instrument but also to improve interpretation…
Descriptors: Chemistry, Science Instruction, Laboratory Equipment, Critical Thinking