NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Journal of Chemical Education17
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Poh Nguk Lau; Siti Nur Aishah Binte Mohammad; Khee Nguen Low; Yek Tann Chua – Journal of Chemical Education, 2024
Guided by the 5E framework (Engage, Explore, Explain, Elaborate, Evaluate), a buffer solution courseware was designed using "Articulate Rise," a content authoring tool. It was deployed in a freshman general chemistry course in the April semesters of 2022 and 2023. The courseware was a supplementary resource to support instructor-created…
Descriptors: Science Instruction, Chemistry, COVID-19, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Fernandes, Henrique S.; Cerqueira, Nuno M. F. S. A.; Sousa, Sergio F. – Journal of Chemical Education, 2021
Visualization can be a motivating way to teach students about molecules. Nowadays, the available experimental data and accurate computational results allow students to build realistic and accurate molecular models. These models include the representation of complex systems such as proteins, membranes, or nanotubes. However, the visualization of…
Descriptors: Computer Simulation, Virtual Classrooms, Internet, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Shuxia; Mei, Bing; Yue, Xiaoyu – Journal of Chemical Education, 2018
This technology report aimed to explore preservice chemistry teachers' perception of mobile augmented reality (MAR) assisted chemical education. To this end, 15 participants were recruited from a Chinese university. They were provided access to an MAR chemistry learning app, Elements 4D, on their own mobile computing devices, and were instructed…
Descriptors: Chemistry, Preservice Teachers, Student Teacher Attitudes, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Eckler, Logan H.; Nee, Matthew J. – Journal of Chemical Education, 2016
A simple molecular dynamics experiment is described to demonstrate transport properties for the undergraduate physical chemistry laboratory. The AMBER package is used to monitor self-diffusion in "n"-hexane. Scripts (available in the Supporting Information) make the process considerably easier for students, allowing them to focus on the…
Descriptors: Molecular Structure, Computation, Measurement Techniques, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Potratz, Jeffrey P. – Journal of Chemical Education, 2017
An interactive classroom demonstration that enhances students' knowledge of steady-state and Michaelis-Menten enzyme kinetics is described. The instructor uses a free version of professional-quality KinTek Explorer simulation software and student input to construct dynamic versions of three static hallmark images commonly used to introduce enzyme…
Descriptors: Biochemistry, Kinetics, Computer Simulation, Courseware
Peer reviewed Peer reviewed
Direct linkDirect link
Tee, Nicholas Yee Kwang; Gan, Hong Seng; Li, Jonathan; Cheong, Brandon Huey-Ping; Tan, Han Yen; Liew, Oi Wah; Ng, Tuck Wah – Journal of Chemical Education, 2018
The handling of chemicals in the laboratory presents a challenge in instructing large class sizes and when students are relatively new to the laboratory environment. In this work, we describe and demonstrate an augmented reality colorimetric titration tool that operates out of the smartphone or tablet of students. It allows multiple students to…
Descriptors: Computer Simulation, Demonstrations (Educational), Handheld Devices, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Sweet, Chelsea; Akinfenwa, Oyewumi; Foley, Jonathan J., IV – Journal of Chemical Education, 2018
We present an interactive discovery-based approach to studying the properties of real gases using simple, yet realistic, molecular dynamics software. Use of this approach opens up a variety of opportunities for students to interact with the behaviors and underlying theories of real gases. Students can visualize gas behavior under a variety of…
Descriptors: Discovery Learning, Molecular Structure, Courseware, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Brown, Jay H. – Journal of Chemical Education, 2015
Cyclic voltammetry (CV) is a popular technique for the study of electrochemical mechanisms because the method can provide useful information on the redox couple. The technique involves the application of a potential ramp on an unstirred solution while the current is monitored, and then the ramp is reversed for a return sweep. CV is sometimes…
Descriptors: Undergraduate Students, Computer Simulation, Courseware, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Matsumoto, Paul S. – Journal of Chemical Education, 2014
The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…
Descriptors: Algebra, Computer Simulation, Advanced Placement, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel – Journal of Chemical Education, 2014
We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…
Descriptors: Computation, Introductory Courses, Scientific Concepts, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
da Silva, Jose´ Nunes, Jr.; Sousa Lima, Mary Anne; Silva Sousa, Eduardo Henrique; Oliveira Alexandre, Francisco Serra; Melo Leite, Antonio Jose´, Jr. – Journal of Chemical Education, 2014
This paper presents a piece of educational software covering a comprehensive number of topics of chemical kinetics, which is available free of charge in Portuguese and English. The software was developed to support chemistry educators and students in the teaching-learning process of chemical kinetics by using animations, calculations, and…
Descriptors: Kinetics, Computation, Educational Resources, Teaching Methods
Peer reviewed Peer reviewed
Moore, John W., Ed. – Journal of Chemical Education, 1985
Describes: (1) an interactive computer simulation for a science fair display of chromatography inks; (2) analytical chemistry programs; (3) microcomputer-assisted drills in organic synthesis; (4) programs for conformation analysis of ethane and butane; (5) MOLPIX--a program for generating and displaying molecular structures; and (6) chemical…
Descriptors: Chemistry, College Science, Computer Simulation, Computer Software
Peer reviewed Peer reviewed
Journal of Chemical Education, 1989
"Spreadsheets in Physical Chemistry" contains reviewed and classroom tested Lotus 1-2-3 and SuperCalc IV templates and handouts designed for use in physical chemistry courses. The 21 templates keyed to Atkins' physical chemistry textbook, the 7 numerical methods templates, and the 10 simulation templates are discussed. (MVL)
Descriptors: Chemistry, College Science, Computer Oriented Programs, Computer Simulation
Peer reviewed Peer reviewed
Whisnant, David M. – Journal of Chemical Education, 1987
Describes a computer simulation which deals with the Werner-Jorgensen controversy from the standpoint of Kuhn's description of scientific change. Encourages the use of such instructional approaches to introduce general chemistry students to the process of science, including how (1) theories develop, (2) change occurs, and (3) scientists behave.…
Descriptors: Chemical Bonding, Chemistry, College Science, Computer Assisted Instruction
Peer reviewed Peer reviewed
Moore, John W., Ed. – Journal of Chemical Education, 1986
Briefly describes eight applications of computers to the teaching of chemistry. Includes discussions of computer software designed for organic synthesis experiments, spectrum band analyses, and the memorization of chemical terminology. Discusses new ways to store and retrieve information, interface plotters and computers, and use pocket computers.…
Descriptors: Chemistry, College Science, Computer Assisted Instruction, Computer Simulation
Previous Page | Next Page »
Pages: 1  |  2