NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ionel Popa; Florin Saitis – Journal of Chemical Education, 2022
Proteins are "magical" workers inside our body, as they accomplish most of the cellular functions. Here we report on a novel approach to teach protein folding and unfolding, using magnets and flexible 3D-printed protein structures. To illustrate this physical process, we used colored circular magnets designed for whiteboards, connected…
Descriptors: Magnets, Printing, Computer Peripherals, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Ragno, Rino; Esposito, Valeria; Di Mario, Martina; Masiello, Stefano; Viscovo, Marco; Cramer, Richard D. – Journal of Chemical Education, 2020
The increasing use of information technology in the discovery of new molecular entities encourages the use of modern molecular-modeling tools to help teach important concepts of drug design to chemistry and pharmacy undergraduate students. In particular, statistical models such as quantitative structure--activity relationships (QSAR)--often as its…
Descriptors: Chemistry, Computer Uses in Education, Pharmaceutical Education, Graduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Buckley, Paul; Fahrenkrug, Eli – Journal of Chemical Education, 2020
This work developed the Flint, Michigan water crisis as a modular case study for teaching traditional analytical chemistry concepts through the medium of environmental justice, power, and equity. An interdisciplinary framework was used to design, implement, and assess the case study in an effort to understand how the deliberate presence of…
Descriptors: Urban Areas, Water Pollution, Chemistry, Case Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Rossi, Sergio; Benaglia, Maurizio; Brenna, Davide; Porta, Riccardo; Orlandi, Manuel – Journal of Chemical Education, 2015
A simple procedure to convert protein data bank files (.pdb) into a stereolithography file (.stl) using VMD software (Virtual Molecular Dynamic) is reported. This tutorial allows generating, with a very simple protocol, three-dimensional customized structures that can be printed by a low-cost 3D-printer, and used for teaching chemical education…
Descriptors: Visual Aids, Models, Printing, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Oliver-Hoyo, Maria; Babilonia-Rosa, Melissa A. – Journal of Chemical Education, 2017
Decades of research have demonstrated the correlation of spatial abilities to chemistry achievement and career selection. Nonetheless, reviews have highlighted the need and scarcity of explicit spatial instruction to promote spatial skills. Therefore, the goal of this literature review is to summarize what has been done during the past decade in…
Descriptors: Spatial Ability, Chemistry, Biochemistry, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Martin, Christopher B.; Vandehoef, Crissie; Cook, Allison – Journal of Chemical Education, 2015
A hands-on activity appropriate for first-semester general chemistry students is presented that combines traditional VSEPR methods of predicting molecular geometries with introductory use of molecular modeling. Students analyze a series of previously calculated output files consisting of several molecules each in various geometries. Each structure…
Descriptors: Chemistry, Hands on Science, Science Activities, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Mihwa; Liu, Xiufeng; Waight, Noemi – Journal of Chemical Education, 2017
This paper describes the development of Connected Chemistry as Formative Assessment (CCFA) pedagogy, which integrates three promising teaching and learning approaches, computer models, formative assessments, and learning progressions, to promote student understanding in chemistry. CCFA supports student learning in making connections among the…
Descriptors: Chemistry, Science Instruction, Secondary School Science, High Schools
Peer reviewed Peer reviewed
Direct linkDirect link
Robertson, Michael J.; Jorgensen, William L. – Journal of Chemical Education, 2015
Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…
Descriptors: Organic Chemistry, Visual Aids, Theories, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Sorensen-Unruh, Clarissa – Journal of Chemical Education, 2017
This Communication summarizes one of the invited papers to the Select 2016 BCCE Presentations ACS CHED Committee on Computers in Chemical Education online ConfChem held from October 30 to November 22, 2016. The ConfChem paper (included within Supporting Information) focuses on the results of one instructor's incorporation of social media into her…
Descriptors: Chemistry, Computer Uses in Education, Conferences (Gatherings), Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Hii, King Kuok; Rzepa, Henry S.; Smith, Edward H. – Journal of Chemical Education, 2015
The coupling of a student experiment involving the preparation and use of a catalyst for the asymmetric epoxidation of an alkene with computational simulations of various properties of the resulting epoxide is set out in the form of a software toolbox from which students select appropriate components. At the core of these are the computational…
Descriptors: Organic Chemistry, Laboratory Experiments, Science Experiments, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Clark, Ted M.; Chamberlain, Julia M. – Journal of Chemical Education, 2014
An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…
Descriptors: Simulation, Science Laboratories, Science Instruction, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Springer, Michael T. – Journal of Chemical Education, 2014
Several articles suggest how to incorporate computer models into the organic chemistry laboratory, but relatively few papers discuss how to incorporate these models broadly into the organic chemistry lecture. Previous research has suggested that "manipulating" physical or computer models enhances student understanding; this study…
Descriptors: Science Instruction, Undergraduate Study, College Science, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Cody, Jeremy A.; Craig, Paul A.; Loudermilk, Adam D.; Yacci, Paul M.; Frisco, Sarah L.; Milillo, Jennifer R. – Journal of Chemical Education, 2012
A novel stereochemistry lesson was prepared that incorporated both handheld molecular models and embedded virtual three-dimensional (3D) images. The images are fully interactive and eye-catching for the students; methods for preparing 3D molecular images in Adobe Acrobat are included. The lesson was designed and implemented to showcase the 3D…
Descriptors: Chemistry, Organic Chemistry, Science Instruction, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Kottonau, Johannes – Journal of Chemical Education, 2011
Effectively teaching the concepts of osmosis to college-level students is a major obstacle in biological education. Therefore, a novel computer model is presented that allows students to observe the random nature of particle motion simultaneously with the seemingly directed net flow of water across a semipermeable membrane during osmotic…
Descriptors: Models, Probability, Internet, Misconceptions
Peer reviewed Peer reviewed
Direct linkDirect link
Pernaa, Johannes; Aksela, Maija – Journal of Chemical Education, 2011
The topics of nature, for example semiochemicals, are motivating topics, which can be used to teach organic chemistry at high school level. The history, classifications, a few important applications of semiochemicals, and an semiochemical that can be synthesized in the laboratory are presented. The laboratory synthesis is carried out through the…
Descriptors: Organic Chemistry, Laboratories, High Schools, Secondary School Science
Previous Page | Next Page ยป
Pages: 1  |  2